Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
J Hazard Mater ; 402: 123765, 2021 01 15.
Article En | MEDLINE | ID: mdl-33254777

Eighteen biocides used in building materials and domestic products were monitored in wastewater treatment plants (WWTPs) during dry weather and in combined sewer overflows (CSOs) during wet weather in the Paris conurbation. The aims of this study were to (i) acquire data on biocides in urban waters, which are very scarce up to now, (ii) identify their origins in CSOs with the perspective of reducing these contaminants at source, and (iii) compare and rank biocide pathways to the river (dry vs. wet weather) at the annual and conurbation scales. The results showed the ubiquity of the 18-targeted biocides in WWTP waters and CSOs. High concentrations of methylisothiazolinone, benzisothiazolinone (0.2-0.9 µg/L) and benzalkonium C12 (0.5-6 µg/L) were measured in wastewater. Poor WWTP removals (< 50 %) were observed for most of the biocides. Both wastewater (mainly domestic uses) and stormwater (leaching from building materials) contributed to the CSO contamination. However, benzisothiazolinone mainly came from wastewater whereas diuron, isoproturon, terbutryn, carbendazim, tebuconazole, and mecoprop mainly came from stormwater. Annual mass loads discharged by WWTPs and CSOs into the Seine River were estimated using a stochastic approach (Monte Carlo simulations) at the conurbation scale and showed that WWTP discharges are the major entry pathway.

3.
Environ Sci Pollut Res Int ; 27(4): 3768-3791, 2020 Feb.
Article En | MEDLINE | ID: mdl-31656996

Biocides are added to or applied on building materials to prevent microorganisms from growing on their surface or to treat them. They are leached into building runoff and contribute to diffuse contamination of receiving waters. This review aimed at summarizing the current state of knowledge concerning the impact of biocides from buildings on the aquatic environment. The objectives were (i) to assess the key parameters influencing the leaching of biocides and to quantify their emission from buildings, (ii) to determine the different pathways from urban sources into receiving waters and (iii) to assess the associated environmental risk. Based on consumption data and leaching studies, a list of substances to monitor in receiving water was established. Literature review of their concentrations in the urban water cycle showed evidences of contamination and risk for aquatic life, which should put them into consideration for inclusion to European or international monitoring programs. However, some biocide concentration data in urban and receiving waters is still missing to fully assess their environmental risk, especially for isothiazolinones, iodopropynyl carbamate, zinc pyrithione and quaternary ammonium compounds, and little is known about their transformation products. Although some models supported by actual data were developed to extrapolate emissions on larger scales (watershed or city scales), they are not sufficient to prioritize the pathways of biocides from urban sources into receiving waters during both dry and wet weathers. Our review highlights the need to reduce emissions and limit their transfer into rivers and reports several solutions to address these issues.


Disinfectants , Water Pollutants, Chemical , Cities , Construction Materials , Disinfectants/analysis , Disinfectants/chemistry , Weather
4.
J Am Chem Soc ; 139(11): 3999-4008, 2017 03 22.
Article En | MEDLINE | ID: mdl-28201872

Biogenic alkenes, which are among the most abundant volatile organic compounds in the atmosphere, are readily oxidized by ozone. Characterizing the reactivity and kinetics of the first-generation products of these reactions, carbonyl oxides (often named Criegee intermediates), is essential in defining the oxidation pathways of organic compounds in the atmosphere but is highly challenging due to the short lifetime of these zwitterions. Here, we report the development of a novel online method to quantify atmospherically relevant Criegee intermediates (CIs) in the gas phase by stabilization with spin traps and analysis with proton-transfer reaction mass spectrometry. Ozonolysis of α-pinene has been chosen as a proof-of-principle model system. To determine unambiguously the structure of the spin trap adducts with α-pinene CIs, the reaction was tested in solution, and reaction products were characterized with high-resolution mass spectrometry, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopy. DFT calculations show that addition of the Criegee intermediate to the DMPO spin trap, leading to the formation of a six-membered ring adduct, occurs through a very favorable pathway and that the product is significantly more stable than the reactants, supporting the experimental characterization. A flow tube set up has been used to generate spin trap adducts with α-pinene CIs in the gas phase. We demonstrate that spin trap adducts with α-pinene CIs also form in the gas phase and that they are stable enough to be detected with online mass spectrometry. This new technique offers for the first time a method to characterize highly reactive and atmospherically relevant radical intermediates in situ.


Alkenes/analysis , Online Systems , Oxides/analysis , Ozone/chemistry , Protons , Atmosphere/chemistry , Kinetics , Mass Spectrometry , Quantum Theory
...