Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Nat Immunol ; 25(6): 1020-1032, 2024 Jun.
Article En | MEDLINE | ID: mdl-38831106

The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.


Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Receptors, Immunologic , Receptors, Tumor Necrosis Factor, Member 14 , Tumor Microenvironment , Animals , Humans , Immunotherapy, Adoptive/methods , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Receptors, Tumor Necrosis Factor, Member 14/immunology , Receptors, Tumor Necrosis Factor, Member 14/genetics , Mice , Tumor Microenvironment/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , T-Lymphocytes, Regulatory/immunology , Signal Transduction , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/therapy , Mice, Knockout
2.
NEJM Evid ; 3(4): EVIDoa2300213, 2024 Apr.
Article En | MEDLINE | ID: mdl-38776868

BACKGROUND: Administration of anti-CD19 chimeric antigen receptor T-cell (CART19) immunotherapy for large B-cell lymphomas (LBCLs), a subset of non-Hodgkin lymphoma (NHL), involves high costs and access to specialized tertiary care centers. We investigated whether minority health populations (MHPs) have equal access to CART19 and whether their outcomes are similar to those of non-MHPs. METHODS: We analyzed the prevalence and clinical outcomes of patients treated with commercial CART19 at two geographically and socioeconomically different institutions: the Abramson Cancer Center (ACC, Philadelphia, Pennsylvania) and the Knight Cancer Institute (KCI, Portland, Oregon). RESULTS: In the ACC catchment area, 8956 patients were diagnosed with NHL between 2015 and 2019 (latest available data from the state registry), including 17.9% MHPs. In the ACC, between 2018 and 2022 (CART became available in 2018), 1492 patients with LBCL were treated, and 194 received CART19. The proportion of MHPs was 15.7% for the entire LBCL cohort but only 6.7% for the CART19 cohort. During the same time, in the KCI catchment area, 4568 patients were diagnosed with NHL, including 4.2% MHPs. In the KCI, 396 patients with LBCL were treated, and 47 received CART19. The proportion of MHPs was 6.6% for the entire LBCL cohort and 4.2% for the CART19 cohort. The 3-month response, survival, and toxicities after CART19 infusion showed similar results, although the number of patients who were treated was limited. CONCLUSIONS: This study shows that the access of MHPs to tertiary centers for LBCL care was preserved but appeared reduced for commercial CART19 immunotherapy. Although clinical outcomes of MHPs seemed similar to those of non-MHPs, the small sample size precludes drawing firm conclusions. Further studies are needed. (Funded by the Laffey McHugh Foundation and others.).


Immunotherapy, Adoptive , Humans , Male , Female , Middle Aged , Immunotherapy, Adoptive/adverse effects , Aged , Adult , Minority Groups/statistics & numerical data , Receptors, Chimeric Antigen/immunology , Antigens, CD19/immunology , Antigens, CD19/therapeutic use
3.
J Hematol Oncol ; 17(1): 19, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38644469

Bendamustine has been retrospectively shown to be an effective and safe lymphodepletion regimen prior to the anti-CD19 chimeric antigen receptor T cell (CART) products tisagenlecleucel and axicabtagene ciloleucel, as well as the anti-BCMA CART products idecabtagene vicleucel and ciltacabtagene autoleucel. However, bendamustine as lymphodepletion prior to lisocabtagene maraleucel (liso-cel), a 4-1BB co-stimulated, fixed CD4:CD8 ratio anti-CD19 CART product, has not been described yet. Thus, we studied a cohort of sequentially-treated patients with large B-cell lymphomas who received bendamustine lymphodepletion before liso-cel at the University of Pennsylvania between 5/2021 and 12/2023 (n = 31). Patients were evaluated for toxicities and responses. Of note, 7 patients (22.6%) would have dnot met the inclusion criteria for the registrational liso-cel clinical trials, mostly due to older age. Overall and complete response rates were 76.9% and 73.1%, respectively. At a median follow-up of 6.3 months, the 6-month progression-free and overall survival were 59.9% and 91.1%, respectively. Rates of cytokine-release syndrome (CRS) and neurotoxicity (ICANS) of any grade were 9.7% and 9.7%, respectively, with no grade ≥ 3 events. No infections were reported during the first 30 days following liso-cel infusion. Neutropenia ≥ grade 3 was observed in 29.0% of patients; thrombocytopenia ≥ grade 3 occurred in 9.7%. In conclusion, bendamustine lymphodepletion before liso-cel appears to be a strategy that can drive tumor responses while ensuring a mild toxicity profile.


Bendamustine Hydrochloride , Immunotherapy, Adoptive , Humans , Bendamustine Hydrochloride/therapeutic use , Middle Aged , Male , Female , Aged , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Retrospective Studies , Adult , Lymphoma, Large B-Cell, Diffuse/drug therapy , Antineoplastic Agents, Alkylating/therapeutic use , Antineoplastic Agents, Alkylating/adverse effects , Biological Products/therapeutic use , Biological Products/adverse effects , Aged, 80 and over , Treatment Outcome
4.
J Infect Dis ; 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38437622

Patients with B-cell lymphomas have altered cellular components of vaccine responses due to malignancy and therapy, and the optimal timing of vaccination relative to therapy remains unknown. SARS-CoV-2 vaccines created an opportunity for new insights in vaccine timing because patients were challenged with a novel antigen across multiple phases of treatment. We studied serologic mRNA vaccine response in retrospective and prospective cohorts with lymphoma and CLL, paired with clinical and research immune parameters. Reduced serologic response was observed more frequently during active therapies, but non-response was also common within observation and post-treatment groups. Total IgA and IgM correlated with successful vaccine response. In individuals treated with CART-19, non-response was associated with reduced B and T follicular helper cells. Predictors of vaccine response varied by disease and therapeutic group, and therefore further studies of immune health during and after cancer therapies are needed to allow individualized vaccine timing.

5.
Cytotherapy ; 26(5): 506-511, 2024 05.
Article En | MEDLINE | ID: mdl-38483365

BACKGROUND AIMS: The successful development of CD19-targeted chimeric antigen receptor (CAR) T-cell therapies has led to an exponential increase in the number of patients recieving treatment and the advancement of novel CAR T products. Therefore, there is a strong need to develop streamlined platforms that allow rapid, cost-effective, and accurate measurement of the key characteristics of CAR T cells during manufacturing (i.e., cell number, cell size, viability, and basic phenotype). METHODS: In this study, we compared the novel benchtop cell analyzer Moxi GO II (ORFLO Technologies), which enables simultaneous evaluation of all the aforementioned parameters, with current gold standards in the field: the Multisizer Coulter Counter (cell counter) and the BD LSRFortessa (flow cytometer). RESULTS: Our results demonstrated that the Moxi GO II can accurately measure cell number and cell size (i.e., cell volume) while simultaneously assessing simple two-color flow cytometry parameters, such as CAR T-cell viability and CD4 or CAR expression. CONCLUSIONS: These measurements are comparable with those of gold standard instruments, demonstrating that the Moxi GO II is a promising platform for quickly monitoring CAR T-cell growth and phenotype in research-grade and clinical samples.


Cell Survival , Flow Cytometry , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Flow Cytometry/methods , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Antigens, CD19/immunology , Antigens, CD19/metabolism , Phenotype , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Immunophenotyping/methods , Cell Size
6.
Nat Med ; 30(4): 984-989, 2024 Apr.
Article En | MEDLINE | ID: mdl-38266761

We report a T cell lymphoma (TCL) occurring 3 months after anti-CD19 chimeric antigen receptor (CAR) T cell immunotherapy for non-Hodgkin B cell lymphoma. The TCL was diagnosed from a thoracic lymph node upon surgery for lung cancer. The TCL exhibited CD8+ cytotoxic phenotype and a JAK3 variant, while the CAR transgene was very low. The T cell clone was identified at low levels in the blood before CAR T infusion and in lung cancer. To assess the overall risk of secondary primary malignancy after commercial CAR T (CD19, BCMA), we analyzed 449 patients treated at the University of Pennsylvania. At a median follow-up of 10.3 months, 16 patients (3.6%) had a secondary primary malignancy. The median onset time was 26.4 and 9.7 months for solid and hematological malignancies, respectively. The projected 5-year cumulative incidence is 15.2% for solid and 2.3% for hematological malignancies. Overall, one case of TCL was observed, suggesting a low risk of TCL after CAR T.


Hematologic Neoplasms , Lung Neoplasms , Lymphoma, B-Cell , Lymphoma, T-Cell , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/adverse effects , Receptors, Chimeric Antigen/genetics , Receptors, Antigen, T-Cell/genetics , Antigens, CD19
7.
Blood ; 143(2): 139-151, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-37616575

ABSTRACT: Patients with multiple myeloma (MM) treated with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T cells usually relapse with BCMA+ disease, indicative of CAR T-cell suppression. CD200 is an immune checkpoint that is overexpressed on aberrant plasma cells (aPCs) in MM and is an independent negative prognostic factor for survival. However, CD200 is not present on MM cell lines, a potential limitation of current preclinical models. We engineered MM cell lines to express CD200 at levels equivalent to those found on aPCs in MM and show that these are sufficient to suppress clinical-stage CAR T-cells targeting BCMA or the Tn glycoform of mucin 1 (TnMUC1), costimulated by 4-1BB and CD2, respectively. To prevent CD200-mediated suppression of CAR T cells, we compared CRISPR-Cas9-mediated knockout of the CD200 receptor (CD200RKO), to coexpression of versions of the CD200 receptor that were nonsignaling, that is, dominant negative (CD200RDN), or that leveraged the CD200 signal to provide CD28 costimulation (CD200R-CD28 switch). We found that the CD200R-CD28 switch potently enhanced the polyfunctionality of CAR T cells, and improved cytotoxicity, proliferative capacity, CAR T-cell metabolism, and performance in a chronic antigen exposure assay. CD200RDN provided modest benefits, but surprisingly, the CD200RKO was detrimental to CAR T-cell activity, adversely affecting CAR T-cell metabolism. These patterns held up in murine xenograft models of plasmacytoma, and disseminated bone marrow predominant disease. Our findings underscore the importance of CD200-mediated immune suppression in CAR T-cell therapy of MM, and highlight a promising approach to enhance such therapies by leveraging CD200 expression on aPCs to provide costimulation via a CD200R-CD28 switch.


Immunotherapy, Adoptive , Multiple Myeloma , Humans , Mice , Animals , Multiple Myeloma/metabolism , CD28 Antigens/metabolism , T-Lymphocytes , B-Cell Maturation Antigen/metabolism , Neoplasm Recurrence, Local/metabolism
8.
Blood Adv ; 8(3): 653-666, 2024 02 13.
Article En | MEDLINE | ID: mdl-38113468

ABSTRACT: Lymphodepletion (LD) is an integral component of chimeric antigen receptor T-cell (CART) immunotherapies. In this study, we compared the safety and efficacy of bendamustine (Benda) to standard fludarabine/cyclophosphamide (Flu/Cy) LD before CD19-directed, CD28-costimulated CART axicabtagene ciloleucel (axi-cel) for patients with large B-cell lymphoma (LBCL) and follicular lymphoma (FL). We analyzed 59 patients diagnosed with LBCL (n = 48) and FL (n = 11) consecutively treated with axi-cel at the University of Pennsylvania. We also analyzed serum samples for cytokine levels and metabolomic changes before and after LD. Flu/Cy and Benda demonstrated similar efficacy, with complete remission rates of 51.4% and 50.0% (P = .981), respectively, and similar progression-free and overall survivals. Any-grade cytokine-release syndrome occurred in 91.9% of patients receiving Flu/Cy vs 72.7% of patients receiving Benda (P = .048); any-grade neurotoxicity after Flu/Cy occurred in 45.9% of patients and after Benda in 18.2% of patients (P = .031). In addition, Flu/Cy was associated with a higher incidence of grade ≥3 neutropenia (100% vs 54.5%; P < .001), infections (78.4% vs 27.3%; P < .001), and neutropenic fever (78.4% vs 13.6%; P < .001). These results were confirmed both in patients with LBCL and those with FL. Mechanistically, patients with Flu/Cy had a greater increase in inflammatory cytokines associated with neurotoxicity and reduced levels of metabolites critical for redox balance and biosynthesis. This study suggests that Benda LD may be a safe alternative to Flu/Cy for CD28-based CART CD19-directed immunotherapy with similar efficacy and reduced toxicities. Benda is associated with reduced levels of inflammatory cytokines and increased anabolic metabolites.


Biological Products , Cytokines , Lymphoma, Follicular , Humans , Bendamustine Hydrochloride/adverse effects , CD28 Antigens , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Cyclophosphamide
9.
Mol Cancer ; 22(1): 200, 2023 12 09.
Article En | MEDLINE | ID: mdl-38066564

BACKGROUND: Commercial anti-CD19 chimeric antigen receptor T-cell therapies (CART19) are efficacious against advanced B-cell non-Hodgkin lymphoma (NHL); however, most patients ultimately relapse. Several mechanisms contribute to this failure, including CD19-negative escape and CAR T dysfunction. All four commercial CART19 products utilize the FMC63 single-chain variable fragment (scFv) specific to a CD19 membrane-distal epitope and characterized by slow association (on) and dissociation (off) rates. We hypothesized that a novel anti-CD19 scFv that engages an alternative CD19 membrane-proximal epitope independent of FMC63 and that is characterized by faster on- and off-rates could mitigate CART19 failure and improve clinical efficacy. METHODS: We developed an autologous CART19 product with 4-1BB co-stimulation using a novel humanized chicken antibody (h1218). This antibody is specific to a membrane-proximal CD19 epitope and harbors faster on/off rates compared to FMC63. We tested h1218-CART19 in vitro and in vivo using FMC63-CART19-resistant models. We conducted a first-in-human multi-center phase I clinical trial to test AT101 (clinical-grade h1218-CART19) in patients with relapsed or refractory (r/r) NHL. RESULTS: Preclinically, h1218- but not FMC63-CART19 were able to effectively eradicate lymphomas expressing CD19 point mutations (L174V and R163L) or co-expressing FMC63-CAR19 as found in patients relapsing after FMC63-CART19. Furthermore, h1218-CART19 exhibited enhanced killing of B-cell malignancies in vitro and in vivo compared with FMC63-CART19. Mechanistically, we found that h1218-CART19 had reduced activation-induced cell death (AICD) and enhanced expansion compared to FMC63-CART19 owing to faster on- and off-rates. Based on these preclinical results, we performed a phase I dose-escalation trial, testing three dose levels (DL) of AT101 (the GMP version of h1218) using a 3 + 3 design. In 12 treated patients (7 DLBCL, 3 FL, 1 MCL, and 1 MZL), AT101 showed a promising safety profile with 8.3% grade 3 CRS (n = 1) and 8.3% grade 4 ICANS (n = 1). In the whole cohort, the overall response rate was 91.7%, with a complete response rate of 75.0%, which improved to 100% in DL-2 and -3. AT101 expansion correlates with CR and B-cell aplasia. CONCLUSIONS: We developed a novel, safe, and potent CART19 product that recognizes a membrane-proximal domain of CD19 with fast on- and off-rates and showed significant efficacy and promising safety in patients with relapsed B-cell NHL. TRIAL REGISTRATION: NCT05338931; Date: 2022-04-01.


Lymphoma, Non-Hodgkin , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen , Humans , Antibodies , Antigens, CD19 , Epitopes/metabolism , Immunotherapy, Adoptive/adverse effects , Lymphoma, Non-Hodgkin/therapy , Lymphoma, Non-Hodgkin/metabolism , Neoplasm Recurrence, Local/metabolism , Receptors, Chimeric Antigen/metabolism , Receptors, Antigen, T-Cell/antagonists & inhibitors
10.
J Immunother Cancer ; 11(4)2023 04.
Article En | MEDLINE | ID: mdl-37055217

Immunotherapy has revolutionized the treatment of cancer. In particular, immune checkpoint blockade, bispecific antibodies, and adoptive T-cell transfer have yielded unprecedented clinical results in hematological malignancies and solid cancers. While T cell-based immunotherapies have multiple mechanisms of action, their ultimate goal is achieving apoptosis of cancer cells. Unsurprisingly, apoptosis evasion is a key feature of cancer biology. Therefore, enhancing cancer cells' sensitivity to apoptosis represents a key strategy to improve clinical outcomes in cancer immunotherapy. Indeed, cancer cells are characterized by several intrinsic mechanisms to resist apoptosis, in addition to features to promote apoptosis in T cells and evade therapy. However, apoptosis is double-faced: when it occurs in T cells, it represents a critical mechanism of failure for immunotherapies. This review will summarize the recent efforts to enhance T cell-based immunotherapies by increasing apoptosis susceptibility in cancer cells and discuss the role of apoptosis in modulating the survival of cytotoxic T lymphocytes in the tumor microenvironment and potential strategies to overcome this issue.


Immunotherapy , Neoplasms , Humans , Immunotherapy/methods , Neoplasms/therapy , Immunotherapy, Adoptive/methods , T-Lymphocytes, Cytotoxic , Apoptosis , Tumor Microenvironment
11.
Mol Ther ; 31(3): 686-700, 2023 03 01.
Article En | MEDLINE | ID: mdl-36641624

Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19+-A20 lymphoma and CD19+-B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types.


Gastrointestinal Microbiome , Receptors, Chimeric Antigen , Humans , Mice , Animals , Receptors, Antigen, T-Cell/genetics , Cross-Priming , Vancomycin/pharmacology , Immunotherapy , T-Lymphocytes , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/genetics , Antigens, CD19
13.
Cancer Discov ; 12(10): 2372-2391, 2022 10 05.
Article En | MEDLINE | ID: mdl-35904479

Chimeric antigen receptor T-cell (CART) immunotherapy led to unprecedented responses in patients with refractory/relapsed B-cell non-Hodgkin lymphoma (NHL); nevertheless, two thirds of patients experience treatment failure. Resistance to apoptosis is a key feature of cancer cells, and it is associated with treatment failure. In 87 patients with NHL treated with anti-CD19 CART, we found that chromosomal alteration of B-cell lymphoma 2 (BCL-2), a critical antiapoptotic regulator, in lymphoma cells was associated with reduced survival. Therefore, we combined CART19 with the FDA-approved BCL-2 inhibitor venetoclax and demonstrated in vivo synergy in venetoclax-sensitive NHL. However, higher venetoclax doses needed for venetoclax-resistant lymphomas resulted in CART toxicity. To overcome this limitation, we developed venetoclax-resistant CART by overexpressing mutated BCL-2(F104L), which is not recognized by venetoclax. Notably, BCL-2(F104L)-CART19 synergized with venetoclax in multiple lymphoma xenograft models. Furthermore, we uncovered that BCL-2 overexpression in T cells intrinsically enhanced CART antitumor activity in preclinical models and in patients by prolonging CART persistence. SIGNIFICANCE: This study highlights the role of BCL-2 in resistance to CART immunotherapy for cancer and introduces a novel concept for combination therapies-the engineering of CART cells to make them resistant to proapoptotic small molecules, thereby enhancing the therapeutic index of these combination therapies. This article is highlighted in the In This Issue feature, p. 2221.


Lymphoma, B-Cell , Lymphoma , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, Chimeric Antigen , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Humans , Immunotherapy , Immunotherapy, Adoptive/methods , Lymphoma/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Receptors, Antigen, T-Cell , Sulfonamides , T-Lymphocytes
14.
Nat Med ; 28(4): 713-723, 2022 04.
Article En | MEDLINE | ID: mdl-35288695

Anti-CD19 chimeric antigen receptor (CAR) T cell therapy has led to unprecedented responses in patients with high-risk hematologic malignancies. However, up to 60% of patients still experience disease relapse and up to 80% of patients experience CAR-mediated toxicities, such as cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. We investigated the role of the intestinal microbiome on these outcomes in a multicenter study of patients with B cell lymphoma and leukemia. We found in a retrospective cohort (n = 228) that exposure to antibiotics, in particular piperacillin/tazobactam, meropenem and imipenem/cilastatin (P-I-M), in the 4 weeks before therapy was associated with worse survival and increased neurotoxicity. In stool samples from a prospective cohort of CAR T cell recipients (n = 48), the fecal microbiome was altered at baseline compared to healthy controls. Stool sample profiling by 16S ribosomal RNA and metagenomic shotgun sequencing revealed that clinical outcomes were associated with differences in specific bacterial taxa and metabolic pathways. Through both untargeted and hypothesis-driven analysis of 16S sequencing data, we identified species within the class Clostridia that were associated with day 100 complete response. We concluded that changes in the intestinal microbiome are associated with clinical outcomes after anti-CD19 CAR T cell therapy in patients with B cell malignancies.


Gastrointestinal Microbiome , Neurotoxicity Syndromes , Receptors, Chimeric Antigen , Antigens, CD19 , Humans , Immunotherapy, Adoptive/adverse effects , Neurotoxicity Syndromes/etiology , Prospective Studies , Retrospective Studies
15.
Nat Med ; 27(5): 842-850, 2021 05.
Article En | MEDLINE | ID: mdl-33888899

While CD19-directed chimeric antigen receptor (CAR) T cells can induce remission in patients with B cell acute lymphoblastic leukemia (ALL), a large subset relapse with CD19- disease. Like CD19, CD22 is broadly expressed by B-lineage cells and thus serves as an alternative immunotherapy target in ALL. Here we present the composite outcomes of two pilot clinical trials ( NCT02588456 and NCT02650414 ) of T cells bearing a 4-1BB-based, CD22-targeting CAR in patients with relapsed or refractory ALL. The primary end point of these studies was to assess safety, and the secondary end point was antileukemic efficacy. We observed unexpectedly low response rates, prompting us to perform detailed interrogation of the responsible CAR biology. We found that shortening of the amino acid linker connecting the variable heavy and light chains of the CAR antigen-binding domain drove receptor homodimerization and antigen-independent signaling. In contrast to CD28-based CARs, autonomously signaling 4-1BB-based CARs demonstrated enhanced immune synapse formation, activation of pro-inflammatory genes and superior effector function. We validated this association between autonomous signaling and enhanced function in several CAR constructs and, on the basis of these observations, designed a new short-linker CD22 single-chain variable fragment for clinical evaluation. Our findings both suggest that tonic 4-1BB-based signaling is beneficial to CAR function and demonstrate the utility of bedside-to-bench-to-bedside translation in the design and implementation of CAR T cell therapies.


4-1BB Ligand/metabolism , Immunotherapy, Adoptive/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Chimeric Antigen/metabolism , Sialic Acid Binding Ig-like Lectin 2/metabolism , T-Lymphocytes/transplantation , Adult , Animals , Antigens, CD19/metabolism , B-Lymphocytes/immunology , CD28 Antigens/genetics , Cells, Cultured , Child , Child, Preschool , Female , Humans , Male , Mice , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , T-Lymphocytes/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , Xenograft Model Antitumor Assays
16.
Cancer Discov ; 10(4): 552-567, 2020 04.
Article En | MEDLINE | ID: mdl-32001516

Primary resistance to CD19-directed chimeric antigen receptor T-cell therapy (CART19) occurs in 10% to 20% of patients with acute lymphoblastic leukemia (ALL); however, the mechanisms of this resistance remain elusive. Using a genome-wide loss-of-function screen, we identified that impaired death receptor signaling in ALL led to rapidly progressive disease despite CART19 treatment. This was mediated by an inherent resistance to T-cell cytotoxicity that permitted antigen persistence and was subsequently magnified by the induction of CAR T-cell functional impairment. These findings were validated using samples from two CAR T-cell clinical trials in ALL, where we found that reduced expression of death receptor genes was associated with worse overall survival and reduced T-cell fitness. Our findings suggest that inherent dysregulation of death receptor signaling in ALL directly leads to CAR T-cell failure by impairing T-cell cytotoxicity and promoting progressive CAR T-cell dysfunction. SIGNIFICANCE: Resistance to CART19 is a significant barrier to efficacy in the treatment of B-cell malignancies. This work demonstrates that impaired death receptor signaling in tumor cells causes failed CART19 cytotoxicity and drives CART19 dysfunction, identifying a novel mechanism of antigen-independent resistance to CAR therapy.See related commentary by Green and Neelapu, p. 492.


Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptors, Chimeric Antigen/metabolism , Receptors, Death Domain/metabolism , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Signal Transduction
...