Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
J Nucl Med ; 65(4): 533-539, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38485273

ß--emitting 177Lu-octreotate is an approved somatostatin receptor subtype 2 (SSTR2)-directed peptide receptor radionuclide therapy for the treatment of gastroenteropancreatic neuroendocrine tumors (NETs). However,177Lu-octreotate has fast pharmacokinetics, requiring up to 4 treatment doses. Moreover, 177Lu is less than ideal for theranostics because of the low branching ratio of its γ-emissions, which limits its SPECT imaging capability. Compared with 177Lu, 67Cu has better decay properties for use as a theranostic. Here, we report the preclinical evaluation of a long-lived somatostatin analog, [67Cu]Cu-DOTA-Evans blue-TATE (EB-TATE), against SSTR2-positive NETs. Methods: The in vitro cytotoxicity of [67Cu]Cu-EB-TATE was investigated on 2-dimensional cells and 3-dimensional spheroids. In vivo pharmacokinetics and dosimetry were studied in healthy BALB/c mice, whereas ex vivo biodistribution, micro-SPECT/CT imaging, and therapy studies were done on athymic nude mice bearing QGP1.SSTR2 and BON1.SSTR2 xenografts. Therapeutic efficacy was compared with [177Lu]Lu-EB-TATE. Results: Projected human effective doses of [67Cu]Cu-EB-TATE for male (0.066 mSv/MBq) and female (0.085 mSv/MBq) patients are tolerable. In vivo micro-SPECT/CT imaging of SSTR2-positive xenografts with [67Cu]Cu-EB-TATE showed tumor-specific uptake and prolonged accumulation. Biodistribution showed tumor accumulation, with concurrent clearance from major organs over a period of 72 h. [67Cu]Cu-EB-TATE was more effective (60%) at eliminating tumors that were smaller than 50 mm3 within the first 15 d of therapy than was [177Lu]Lu-EB-TATE (20%) after treatment with 2 doses of 15 MBq administered 10 d apart. Mean survival of [67Cu]Cu-EB-TATE-treated groups was 90 d and more than 90 d, whereas that of [177Lu]Lu-EB-TATE was more than 90 d and 89 d against vehicle control groups (26 d and 53 d), for QGP1.SSTR2 and BON1.SSTR2 xenografts, respectively. Conclusion: [67Cu]Cu-EB-TATE exhibited high SSTR2-positive NET uptake and retention, with favorable dosimetry and SPECT/CT imaging capabilities. The antitumor efficacy of [67Cu]Cu-EB-TATE is comparable to that of [177Lu]Lu-EB-TATE, with [67Cu]Cu-EB-TATE being slightly more effective than [177Lu]Lu-EB-TATE for complete remission of small tumors. [67Cu]Cu-EB-TATE therefore warrants clinical development.


Neuroendocrine Tumors , Animals , Mice , Humans , Male , Female , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/radiotherapy , Neuroendocrine Tumors/drug therapy , Octreotide , Precision Medicine , Evans Blue , Receptors, Somatostatin/metabolism , Tissue Distribution , Mice, Nude
2.
Appl Radiat Isot ; 200: 110988, 2023 Oct.
Article En | MEDLINE | ID: mdl-37633190

In this study, [18F]FGA was obtained by a one-step oxidation of [18F]FDG using sodium hypochlorite. The conversion from [18F]FDG to [18F]FGA was confirmed by HPLC to be over 95% using the optimal condition. A549-luciferase NSCLC xenografted mice was used for in vivo PET imaging. Prior to either saline or cisplatin treatment, there was no significant difference on tumor uptake of [18F]FGA in all mice, with an average uptake of (0.21 ± 0.16) %ID/g. After treatment, tumor uptake of [18F]FGA was not changed significantly for saline-treated mice, whereas the tumor uptake of [18F]FGA drastically increased for cisplatin-treated mice, with an average uptake of (1.63 ± 0.16) %ID/g. The ratio of tumor uptake between cisplatin-treated vs. saline-treated mice was 7.8 ± 0.2 within one week of treatment. PET imaging results were consistent with ex vivo biodistribution data. BLI showed significant light intensity suppression after treatment, indicating necrosis. Our data indicate that [18F]FGA uptake was related to tumor necrosis. [18F]FGA PET/CT imaging might be a useful tool to monitor treatment response to chemotherapy by imaging tumor necrosis.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Cisplatin/therapeutic use , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Tissue Distribution , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Glucaric Acid , Necrosis/diagnostic imaging , Lung Neoplasms/diagnostic imaging
3.
Mol Imaging Biol ; 25(1): 133-143, 2023 02.
Article En | MEDLINE | ID: mdl-34845659

PURPOSE: Previous studies indicate that 99mTc- and fluorescent-labeled c[Cys-Thr-Pro-Ser-Pro-Phe-Ser-His-Cys]OH (TCP-1) peptides were able to detect colorectal cancer (CRC) and tumor-associated vasculature. This study was designed to characterize the targeting properties of PEGylated and non-PEGylated TCP-1 peptides for CRC imaging. PROCEDURES: Cell uptake of cyanine 7 (Cy7)-labeled TCP-1 probes (Cy7-PEG4-TCP-1 and Cy7-TCP-1) was investigated in three CRC cell lines (human, HCT116 and HT29; mouse, CT26). Xenograft and orthotopic CRC tumor models with HCT116 and CT26 cells were used to characterize biodistribution and CRC tumor-targeting properties of TCP-1 fluorescence and radioligand with and without PEGylation, [99mTc]Tc-HYNIC-PEG4-TCP-1 vs. [99mTc]Tc-HYNIC-TCP-1. RESULTS: Fluorescence images showed that TCP-1 probes were distributed in the cytoplasm and nucleus of CRC cells. When CT26 cells were treated with unlabeled TCP-1 peptide prior to the cell incubation with Cy7-PEG4-TCP-1, cell fluorescent signals were significantly reduced relative to the cells without blockade. Relative to Cy7-TCP-1, superior brilliance and visibility of fluorescence was observed in the tumor with Cy7-PEG4-TCP-1 and maintained up to 18 h post-injection. [99mTc]Tc-HYNIC-PEG4-TCP-1 images in xenograft and orthotopic CRC models demonstrated that TCP-1 PEGylation preserved tumor-targeting capability of TCP-1, but its distribution (%ID/g) in the liver and intestine was higher than that of [99mTc]Tc-HYNIC-TCP-1 (1.51 ± 0.29 vs 0.53 ± 0.12, P < 0.01). Better tumor visualization by [99mTc]Tc-HYNIC-TCP-1 was observed in the orthotopic CRC model due to lower intestinal radioactivity. CONCLUSIONS: TCP-1-based probes undergo endocytosis and localize in the cytoplasm and nucleus of human and mouse CRC cells. Tumor detectability of fluorescent TCP-1 peptide with a PEG4 spacer is promising due to its enhanced tumor binding affinity and rapid clearance kinetics from nontumor tissues. Non-PEGylated [99mTc]Tc-HYNIC-TCP-1 exhibits lower nonspecific accumulation in the liver and gastrointestinal tract and might have better capability for detecting CRC lesions in clinical sites. TCP-1 may represent an innovative targeting molecule for detecting CRC noninvasively.


Colorectal Neoplasms , Peptides , Humans , Animals , Mice , Tissue Distribution , Peptides/metabolism , Tomography, Emission-Computed, Single-Photon/methods , Colorectal Neoplasms/diagnostic imaging , Cell Line, Tumor , Organotechnetium Compounds/chemistry
4.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 20.
Article En | MEDLINE | ID: mdl-34832975

Glioblastoma multiforme (GBM), the most common type of brain cancer, is extremely aggressive and has a dreadful prognosis. GBM comprises 60% of adult brain tumors and the 5 year survival rate of GBM patients is only 4.3%. Standard-of-care treatment includes maximal surgical removal of the tumor in combination with radiation and temozolomide (TMZ) chemotherapy. TMZ is the "gold-standard" chemotherapy for patients suffering from GBM. However, the median survival is only about 12 to 18 months with this protocol. Consequently, there is a critical need to develop new therapeutic options for treatment of GBM. Nanomaterials have unique properties as multifunctional platforms for brain tumor therapy and diagnosis. As one of the nanomaterials, lipid-based nanocarriers are capable of delivering chemotherapeutics and imaging agents to tumor sites by enhancing the permeability of the compound through the blood-brain barrier, which makes them ideal for GBM therapy and imaging. Nanocarriers also can be used for delivery of radiosensitizers to the tumor to enhance the efficacy of the radiation therapy. Previously, high-atomic-number element-containing particles such as gold nanoparticles and liposomes have been used as radiosensitizers. SapC-DOPS, a protein-based liposomal drug comprising the lipid, dioleoylphosphatidylserine (DOPS), and the protein, saposin C (SapC), has been shown to be effective for treatment of a variety of cancers in small animals, including GBM. SapC-DOPS also has the unique ability to be used as a carrier for delivery of radiotheranostic agents for nuclear imaging and radiotherapeutic purposes. These unique properties make tumor-targeting proteo-liposome nanocarriers novel therapeutic and diagnostic alternatives to traditional chemotherapeutics and imaging agents. This article reviews various treatment modalities including nanolipid-based delivery and therapeutic systems used in preclinical and clinical trial settings for GBM treatment and detection.

5.
ACS Sens ; 6(10): 3657-3666, 2021 10 22.
Article En | MEDLINE | ID: mdl-34549942

Surgical resection of cancerous tissues is a critical procedure for solid tumor treatment. During the operation, the surgeon mostly identifies the cancerous tissues by naked-eye visualization under white light without aid, therefore, the outcome heavily relies on the surgeon's experience. A near-infrared pH-responsive fluorogenic dye, CypH-11, was designed to be used as a sensitive cancer spray to highlight cancerous tissues during surgical operations, minimizing the surgeon's subjective judgment. CypH-11, pKa 6.0, emits almost no fluorescence at neutral pH but fluoresces brightly in an acidic environment, a ubiquitous consequence of cancer cell proliferation. After topical application, CypH-11 was absorbed quickly, and its fluorescence signal in the cancerous tissue was developed within a minute. The signal-to-background ratio was 1.3 and 1.5 at 1 and 10 min, respectively. The fluorogenic property and near-instant signal development capability enable the "spray-and-see" concept. This fast-acting CypH-11 spray could be a handy and effective tool for fluorescence-guided surgery, identifying small cancerous lesions in real time for optimal resection without systemic toxicity.


Neoplasms , Fluorescence , Humans , Hydrogen-Ion Concentration
6.
J Am Coll Cardiol ; 76(16): 1862-1874, 2020 10 20.
Article En | MEDLINE | ID: mdl-33059832

BACKGROUND: Apoptosis in atherosclerotic lesions contributes to plaque vulnerability by lipid core enlargement and fibrous cap attenuation. Apoptosis is associated with exteriorization of phosphatidylserine (PS) and phosphatidylethanolamine (PE) on the cell membrane. Although PS-avid radiolabeled annexin-V has been employed for molecular imaging of high-risk plaques, PE-targeted imaging in atherosclerosis has not been studied. OBJECTIVES: This study sought to evaluate the feasibility of molecular imaging with PE-avid radiolabeled duramycin in experimental atherosclerotic lesions in a rabbit model and compare duramycin targeting with radiolabeled annexin-V. METHODS: Of the 27 rabbits, 21 were fed high-cholesterol, high-fat diet for 16 weeks. Nine of the 21 rabbits received 99mTc-duramycin (test group), 6 received 99mTc-linear duramycin (duramycin without PE-binding capability, negative radiotracer control group), and 6 received 99mTc-annexin-V for radionuclide imaging. The remaining normal chow-fed 6 animals (disease control group) received 99mTc-duramycin. In vivo microSPECT/microCT imaging was performed, and the aortas were explanted for ex vivo imaging and for histological characterization of atherosclerosis. RESULTS: A significantly higher duramycin uptake was observed in the test group compared with that of disease control and negative radiotracer control animals; duramycin uptake was also significantly higher than the annexin-V uptake. Quantitative duramycin uptake, represented as the square root of percent injected dose per cm (√ID/cm) of abdominal aorta was >2-fold higher in atherosclerotic lesions in test group (0.08 ± 0.01%) than in comparable regions of disease control animals (0.039 ± 0.0061%, p = 3.70·10-8). Mean annexin uptake (0.060 ± 0.010%) was significantly lower than duramycin (p = 0.001). Duramycin uptake corresponded to the lesion severity and macrophage burden. The radiation burden to the kidneys was substantially lower with duramycin (0.49% ID/g) than annexin (5.48% ID/g; p = 4.00·10-4). CONCLUSIONS: Radiolabeled duramycin localizes in lipid-rich areas with high concentration of apoptotic macrophages in the experimental atherosclerosis model. Duramycin uptake in atherosclerotic lesions was significantly greater than annexin-V uptake and produced significantly lower radiation burden to nontarget organs.


Apoptosis/physiology , Atherosclerosis/metabolism , Cell Membrane/metabolism , Molecular Imaging/methods , Phospholipids/metabolism , Animals , Atherosclerosis/diagnostic imaging , Atherosclerosis/etiology , Bacteriocins/metabolism , Cell Membrane/pathology , Diet, High-Fat/adverse effects , Humans , Male , Peptides/metabolism , Rabbits , Radionuclide Imaging/methods
7.
Cells ; 9(9)2020 08 25.
Article En | MEDLINE | ID: mdl-32854321

Glioblastoma multiforme (GBM), a common type of brain cancer, has a very poor prognosis. In general, viable GBM cells exhibit elevated phosphatidylserine (PS) on their membrane surface compared to healthy cells. We have developed a drug, saposin C-dioleoylphosphatidylserine (SapC-DOPS), that selectively targets cancer cells by honing in on this surface PS. To examine whether SapC-DOPS, a stable, blood-brain barrier-penetrable nanovesicle, could be an effective delivery system for precise targeted therapy of radiation, we iodinated several carbocyanine-based fluorescent reporters with either stable iodine (127I) or radioactive isotopes (125I and 131I). While all of the compounds, when incorporated into the SapC-DOPS delivery system, were taken up by human GBM cell lines, we chose the two that best accumulated in the cells (DiI (22,3) and DiD (16,16)). Pharmacokinetics were conducted with 125I-labeled compounds and indicated that DiI (22,3)-SapC-DOPS had a time to peak in the blood of 0.66 h and an elimination half-life of 8.4 h. These values were 4 h and 11.5 h, respectively, for DiD (16,16)-SapC-DOPS. Adult nude mice with GBM cells implanted in their brains were treated with 131I-DID (16,16)-SapC-DOPS. Mice receiving the radionuclide survived nearly 50% longer than the control groups. These data suggest a potential novel, personalized treatment for a devastating brain disease.


Biological Therapy/methods , Glioblastoma/radiotherapy , Glioblastoma/therapy , Nanotechnology/methods , Phosphatidylserines/metabolism , Animals , Humans , Mice , Mice, Nude
9.
Biomed Pharmacother ; 125: 109947, 2020 May.
Article En | MEDLINE | ID: mdl-32058215

PURPOSE: 99mTc-duramycin imaging enables specific visualization of cell death qualitatively and quantitatively. This study aimed to investigate the potential of 99mTc-duramycin imaging in the early prediction of the curative effect of radiotherapy in combination with or without cetuximab in a nasopharyngeal carcinoma (NPC) model. METHODS: Male BALB/c mice bearing NPC xenografts were randomized into four groups (six mice each group). Group 1 received radiotherapy (RT, 15 Gy/mouse) in combination with cetuximab (CTX, 2 mg/mouse), group 2 received RT (15 Gy/mouse), group 3 was treated using CTX (2 mg/mouse), and group 4, the control group, was treated using a vehicle. 99mTc-duramycin imaging was performed before treatment and 24 h after treatment to evaluate tumor response. Tumor uptake of 99mTc-duramycin was validated ex vivo using γ-counting. Treatment response was further validated by cleaved caspase-3 (CC3) and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL). Another four groups were treated parallelly under the same conditions to observe treatment response by tumor volume changes. RESULTS: After 24 h treatment, 99mTc-duramycin uptake in the NPC tumor models were significantly higher in group 1 than in group 2 (P < 0.05), group 3 (P < 0.05), or group 4 (P < 0.05); the uptake also increased notably in comparison with baseline values (P < 0.05). Compared with group 4, group 2 and group 3 both showed significant 99mTc-duramycin uptake in the tumors (P < 0.05). Although the 99mTc-duramycin uptake of group 2 was moderately higher than group 3, there were no significant differences between these two groups (P >0.05). There was a strong positive correlation between tumor 99mTc-duramycin uptake and CC3 (r = 0.893, p < 0.0001) and TUNEL (r = 0.918, P < 0.0001). Tumor volume decreased remarkably in the RT in combination with CTX group on day 5, in the RT alone group on day 7, and was inhibited on day 8 in the CTX alone group, whereas the tumors grew continuously in the control group. CONCLUSIONS: We demonstrated that RT in combination with CTX treatment significantly improved disease control in a NPC xenograft model compared with monotherapy with either. 99mTc-duramycin imaging might be able to reliably identify response to RT in combination with CTX as early as 24 h after therapy initiation in NPC xenograft models. This might help to isolate non-responding patients in a timely manner and avoid unnecessary side effects in the clinic in the future.


Bacteriocins/administration & dosage , Cetuximab/pharmacology , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Neoplasms/therapy , Peptides/administration & dosage , Animals , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/pharmacology , Cell Line, Tumor , Cetuximab/administration & dosage , Combined Modality Therapy , Humans , In Situ Nick-End Labeling , Male , Mice , Mice, Inbred BALB C , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Technetium/chemistry , Treatment Outcome , Tumor Burden/drug effects , Tumor Burden/radiation effects , Xenograft Model Antitumor Assays
10.
Nucl Med Biol ; 78-79: 23-30, 2019.
Article En | MEDLINE | ID: mdl-31678784

INTRODUCTION: Both phosphatidylethanolamine (PE) and phosphatidylserine (PS) can be externalized to the outer cell membrane in apoptosis. Thus the objective was to determine whether PE-targeting 18F-duramycin and PS-targeting 18F-Zn-DPA could be used for imaging apoptosis. METHODS: Duramycin and Zn-DPA were labeled with either 18F-Al or 18F-SFB. U937 cells were incubated with four different concentrations of camptothecin (CPT). For assessing the effect of incubation time on uptake, 37 MBq of radiotracer was added to cells incubated for 15, 30, 60, and 120 min at 37 °C. For blocking experiments, 150 µg duramycin and 40 µg Zn-DPA were added to cells for 15 min prior to the addition of either duramycin or Zn-DPA labeled with 18F. Apoptosis was measured by flow cytometry using an annexin-V/PI kit. Cells were co-stained with Hoechst, Cy5-duramycin, and PSVue480 (FITC-Zn-DPA) to localize fluorescent dye uptake in cells. RESULTS: Apoptosis in cells increased proportionally with CTP as confirmed by both flow cytometry and fluorescent staining. Both FITC-Zn-DPA and FITC-duramycin localized mainly on the cell membrane during early apoptosis and then translocated to the inside during late apoptosis. Uptake of FITC-duramycin, however, was higher than that of FITC-Zn-DPA. Cellular uptake of four different radiotracers was also proportional to the degree of apoptosis, increasing slightly over time and reaching a plateau at about 1 h. The blocking experiments demonstrated that uptake in all the control groups was predominantly non-specific, whereas the specific uptake in all the treated groups was at least 50% for both 18F labeled duramycin and Zn-DPA. CONCLUSION: Both PE-targeting 18F-duramycin and PS-targeting 18F-Zn-DPA could be considered as potential radiotracers for imaging cellular apoptosis. Advances in knowledge and implications for patient care: Cellular data support the further development of radiotracers targeting either PE or PS for imaging apoptosis, which can associate with clinical outcome for cancer patients.


Apoptosis , Molecular Imaging/methods , Phosphatidylethanolamines/metabolism , Phosphatidylserines/metabolism , Apoptosis/drug effects , Bacteriocins/chemistry , Bacteriocins/metabolism , Biological Transport , Camptothecin/pharmacology , Cell Line, Tumor , Diphenylamine/chemistry , Diphenylamine/metabolism , Fluorine Radioisotopes , Humans , Peptides/chemistry , Peptides/metabolism , Radiochemistry
11.
J Med Chem ; 62(13): 6047-6062, 2019 07 11.
Article En | MEDLINE | ID: mdl-31181158

We report that compound 13, a novel phosphatidylserine-targeting zinc(II) dipicolylamine drug conjugate, readily triggers a positive feedback therapeutic loop through the in situ generation of phosphatidylserine in the tumor microenvironment. Linker modifications, pharmacokinetics profiling, in vivo antitumor studies, and micro-Western array of treated-tumor tissues were employed to show that this class of conjugates induced regeneration of apoptotic signals, which facilitated subsequent recruitment of the circulating conjugates through the zinc(II) dipicolylamine-phosphatidylserine association and resulted in compounding antitumor efficacy. Compared to the marketed compound 17, compound 13 not only induced regressions in colorectal and pancreatic tumor models, it also exhibited at least 5-fold enhancement in antitumor efficacy with only 40% of the drug employed during treatment, culminating in a >12.5-fold increase in therapeutic potential. Our study discloses a chemically distinct apoptosis-targeting theranostic, with built-in complementary functional moieties between the targeting module and the drug mechanism to expand the arsenal of antitumor therapy.


Antineoplastic Agents/therapeutic use , Coordination Complexes/therapeutic use , Indolizines/therapeutic use , Neoplasms/drug therapy , Phosphatidylserines/metabolism , Picolines/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Drug Design , Humans , Indolizines/chemical synthesis , Indolizines/chemistry , Male , Mice, Inbred ICR , Mice, Nude , Molecular Structure , Picolines/chemical synthesis , Picolines/chemistry , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/therapeutic use , Xenograft Model Antitumor Assays , Zinc/chemistry
12.
Nucl Med Biol ; 66: 18-25, 2018 11.
Article En | MEDLINE | ID: mdl-30170197

OBJECTIVE: Apoptosis plays a crucial role in many biological processes, especially in cancer. However, real-time monitoring of apoptosis is challenging. [99mTc]duramycin can selectively target an apoptosis biomarker: phosphatidylethanolamine (PE), which is normally located on the intracellular cell-membrane surface but redistributes onto the outer cell-membrane upon apoptosis. Therefore, 99mTc-duramycin is a potential probe for non-invasive detection of apoptosis in real-time. The aim of this study was to evaluate the value of [99mTc]duramycin for detecting early apoptotic response in tumors after chemotherapy, thus providing a tool for early prediction of curative effects in tumors. METHODS: Human breast cancer MDA-MB-468 model mice, randomly divided into two groups, were injected with cisplatin or vehicle once per day. [99mTc]duramycin imaging was performed for group 1 before treatment and 24 h after the third day of treatment to evaluate treatment response through animal single-photon emission computed tomography (SPECT/CT). Mice in group 2 were treated for 10 days consecutively, to observe treatment response by tumor volume changes. Treatment response was further demonstrated through TdT-mediated dUTP nick-end labeling (TUNEL) and cleaved caspase-3 (CC3). RESULTS: [99mTc]duramycin uptake in MDA-MB-468 tumors was significantly higher in the treatment group than the control group after as few as 3 days of cisplatin treatment (p = 0.0001), and it also increased after treatment as comparison with that before treatment (p = 0.0001). Moreover, [99mTc]duramycin uptake in tumors clearly correlated with immunohistochemistry results (TUNEL: r = 0.892, p = 0.0001, and CC3: r = 0.89, p = 0.0001). Additionally, tumor size reduction, indicating effective treatment, was not observed until the eighth day after treatment, far later than the time when diagnosis could be made through [99mTc]duramycin imaging. CONCLUSIONS: [99mTc]duramycin SPECT/CT provides a non-invasive molecular imaging strategy for early detection of tumor apoptosis after chemotherapy and thus may have great potential value in the clinic.


Bacteriocins/metabolism , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Molecular Probes/metabolism , Organotechnetium Compounds/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Early Detection of Cancer , Feasibility Studies , Female , Humans , Mammary Neoplasms, Experimental/diagnostic imaging , Mammary Neoplasms, Experimental/pathology , Mice , Quality Control , Single Photon Emission Computed Tomography Computed Tomography , Time Factors , Treatment Outcome
13.
JACC Cardiovasc Imaging ; 11(12): 1823-1833, 2018 12.
Article En | MEDLINE | ID: mdl-29454770

OBJECTIVES: The purpose of this study was to evaluate the feasibility of imaging apoptosis in experimental ischemia-reperfusion model by technetium-99m (99mTc)-labeled Duramycin, and compare it to an established tracer, 99mTc-labeled Annexin-V, which has a relative disadvantage of high radiation burden to nontarget organs. BACKGROUND: During apoptosis, the cell membrane phospholipids-phosphatidylserine (PS) and phosphatidylethanolamine (PE) are exposed and can be targeted by Annexin-V and Duramycin, respectively, for in vivo imaging. Identification of a reversible cell death process should permit therapeutic intervention to help reduce myocyte loss and left ventricle dysfunction. METHODS: In a 40-min left coronary artery ischemia-reperfusion model in 17 rabbits, 7 mCi of 99mTc-labeled Duramycin (n = 10), 99mTc-linear Duramycin (a negative tracer control; n = 3), or 99mTc-Annexin-V (a positive tracer-control; n = 4) were intravenously administered 30 min after reperfusion. Of the 10 Duramycin group animals, 4 animals were treated with an antiapoptotic agent, minocycline at the time of reperfusion. In vivo and ex vivo micro-single-photon emission computed tomography (µSPECT) and micro-computed tomography (µCT) imaging was performed 3 h after reperfusion, followed by quantitative assessment of tracer uptake and pathological characterization. Fluorescent Duramycin and Annexin-V were injected in 4 rats to visualize colocalization in infarct areas in a 40-min left coronary artery occlusion and 30-min reperfusion model. RESULTS: Intense uptake of Duramycin and Annexin-V was observed in the apical (infarcted) areas. The percent injected dose per gram uptake of Duramycin in apical region (0.751 ± 0.262%) was significantly higher than remote area in same animals (0.045 ± 0.029%; p < 0.01). Duramycin uptake was insignificantly lower than Annexin-V uptake (1.23 ± 0.304%; p > 0.01) but demonstrated substantially lower radiation burden to kidneys (0.358 ± 0.210% vs. 1.58 ± 0.316%, respectively; p < 0.001). Fluorescence studies with Duramycin and Annexin V showed colocalization in infarct areas. Minocycline treatment substantially resolved Duramycin uptake (0.354% ± 0.0624%; p < 0.01). CONCLUSIONS: Duramycin is similarly effective in imaging apoptotic cell death as Annexin-V with lower nontarget organ radiation. Clinical feasibility of apoptosis imaging with a PE-seeking tracer should be tested.


Annexin A5/administration & dosage , Apoptosis , Bacteriocins/administration & dosage , Molecular Imaging/methods , Myocardial Infarction/diagnostic imaging , Myocardial Reperfusion Injury/diagnostic imaging , Myocardium/pathology , Organotechnetium Compounds/administration & dosage , Phosphatidylethanolamines/metabolism , Radiopharmaceuticals/administration & dosage , Tomography, Emission-Computed, Single-Photon , Animals , Annexin A5/toxicity , Bacteriocins/toxicity , Disease Models, Animal , Feasibility Studies , Male , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , Organotechnetium Compounds/toxicity , Organs at Risk , Predictive Value of Tests , Rabbits , Radiopharmaceuticals/toxicity , Risk Assessment , Time Factors , X-Ray Microtomography
14.
Mol Imaging Biol ; 20(2): 249-259, 2018 04.
Article En | MEDLINE | ID: mdl-28785938

PURPOSE: Apoptosis is a key factor in unstable plaques. The aim of this study is to evaluate the utility of visualizing atherosclerotic plaques with radiolabeled duramycin and Annexin V. PROCEDURES: ApoE-/- mice were fed with a high-fat diet to develop atherosclerosis, C57 mice as a control. Using a routine conjugation protocol, highly pure [99mTc]duramycin and [99mTc]Annexin V were obtained, which were applied for in vitro cell assays of apoptosis and in vivo imaging of atherosclerotic plaques in the animal model. Oil Red O staining, TUNEL, hematoxylin-eosin (HE), and CD68 immunostaining were used to evaluate the deposition of lipids and presence of apoptotic macrophages in the lesions where focal intensity positively correlated with the uptake of both tracers. RESULTS: [99mTc]duramycin and [99mTc]Annexin V with a high radiochemical purity (97.13 ± 1.52 and 94.94 ± 0.65 %, respectively) and a well stability at room temperature were used. Apoptotic cells binding activity to [99mTc]duramycin (Kd, 6.92 nM and Bmax, 56.04 mol/1019 cells) was significantly greater than [99mTc]Annexin V (Kd, 12.63 nM and Bmax, 31.55 mol/1019 cells). Compared with [99mTc]Annexin V, [99mTc]duramycin bound avidly to atherosclerotic lesions with a higher plaque-to-background ratio (P/B was 8.23 ± 0.91 and 5.45 ± 0.48 at 20 weeks, 15.02 ± 0.23 and 12.14 ± 0.22 at 30 weeks). No plaques were found in C57 control mice. Furthermore, Oil Red O staining showed lipid deposition areas were significantly increased in ApoE-/- mice at 20 and 30 weeks, and TUNEL and CD68 staining confirmed that the focal uptake of both tracers contained abundant apoptotic macrophages. CONCLUSIONS: This stable, fast clearing, and highly specific [99mTc]duramycin, therefore, can be useful for the quantification of vulnerable atherosclerotic plaques.


Annexin A5/chemistry , Bacteriocins/chemistry , Organotechnetium Compounds/chemistry , Plaque, Atherosclerotic/diagnostic imaging , Single Photon Emission Computed Tomography Computed Tomography , Animals , Aorta/pathology , Apolipoproteins E/deficiency , Apoptosis , Humans , Lipids/chemistry , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Radiopharmaceuticals/chemistry
15.
Bioconjug Chem ; 28(7): 1878-1892, 2017 07 19.
Article En | MEDLINE | ID: mdl-28581724

A series of zinc(II) dipicolylamine (ZnDPA)-based drug conjugates have been synthesized to probe the potential of phosphatidylserine (PS) as a new antigen for small molecule drug conjugate (SMDC) development. Using in vitro cytotoxicity and plasma stability studies, PS-binding assay, in vivo pharmacokinetic studies, and maximum tolerated dose profiles, we provided a roadmap and the key parameters required for the development of the ZnDPA based drug conjugate. In particular, conjugate 24 induced tumor regression in the COLO 205 xenograft model and exhibited a more potent antitumor effect with a 70% reduction of cytotoxic payload compared to that of the marketed irinotecan when dosed at the same regimen. In addition to the validation of PS as an effective pharmacodelivery target for SMDC, our work also provided the foundation that, if applicable, a variety of therapeutic agents could be conjugated in the same manner to treat other PS-associated diseases.


Antineoplastic Agents/pharmacokinetics , Immunoconjugates/therapeutic use , Molecular Targeted Therapy/methods , Organometallic Compounds/immunology , Phosphatidylserines/immunology , Picolinic Acids/immunology , Animals , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Organometallic Compounds/chemical synthesis , Organometallic Compounds/pharmacology , Phosphatidylserines/metabolism , Picolinic Acids/chemical synthesis , Picolinic Acids/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
16.
Mol Pharm ; 14(1): 147-156, 2017 01 03.
Article En | MEDLINE | ID: mdl-28043132

Here we used a lipid-soluble Zn(II)-bis-dipicolylamine derivative as a membrane component to develop liposomal carriers that have potential to be targeted to phosphatidylserine (PS) rich surfaces on cancer cells and to preferentially kill cancer cells without using anticancer drugs. This DPA derivative (abbreviated as DPA-Cy3[22,22]) contains the fluorophore cyanine 3 (Cy3) and two 22-carbon chains that can be anchored into liposomal membrane bilayers. DPA-Cy3[22,22]/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) unilamellar vesicles (∼150 nm) showed selective binding to PS-containing liposomes as demonstrated by anion exchange chromatography. This binding does not result in vesicle fusion or aggregation. Flow cytometry showed that DPA-Cy3[22,22]/POPC liposomes have preferential binding to MCF-7 breast cancer cells over MCF-12A noncancer cells due to 3-7 times more PS exposures on MCF-7. The extent of liposome binding with MCF-7 cells was increased by two times after cells were pretreated with the apoptotic inducer camptothecin, which increased PS exposure to the cell surface. Moreover, our flow cytometry data also suggest that local cell membrane perturbations may occur upon liposome binding and internalization. This implies that DPA-Cy3[22,22]/POPC liposomes alone may have a PS-dependent cytotoxic effect. This assertion was supported by the cell proliferation assay, which showed that 9.1 mol % DPA-Cy3[22,22]/POPC liposomes exert cytotoxicity on MCF-7 cells 3.5 times higher than that on MCF-12A cells. These results indicate that DPA-Cy3[22,22]-containing liposomes hold great promise as efficient nano drug carriers.


Amines/administration & dosage , Amines/chemistry , Cell Membrane/drug effects , Liposomes/chemistry , Neoplasms/drug therapy , Phosphatidylserines/metabolism , Picolinic Acids/administration & dosage , Picolinic Acids/chemistry , Zinc/chemistry , Anions/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Carriers/chemistry , Humans , Lipid Bilayers/chemistry , Liposomes/administration & dosage , MCF-7 Cells , Membrane Fusion/drug effects , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Phosphatidylcholines/chemistry , Unilamellar Liposomes/chemistry , Zinc/administration & dosage
17.
J Control Release ; 239: 223-30, 2016 10 10.
Article En | MEDLINE | ID: mdl-27574992

Molecular probes capable of detecting colorectal cancer (CRC) are needed for early CRC diagnosis. The objective of this study was to characterize c[CTPSPFSHC]OH (TCP-1), a small peptide derived from phage display selection, for targeting human CRC xenografts using technetium-99m ((99m)Tc)-labeled TCP-1 and fluorescent cyanine-7 (Cy7)-labeled form of the peptide (Cy7-TCP-1). (99m)Tc-TCP-1 was generated by modifying TCP-1 with succinimidyl-6-hydrazino-nicotinamide (S-HYNIC) followed by radiolabeling. In vitro saturation binding experiments were performed for (99m)Tc-TCP-1 in human HCT116 colon cancer cells. SCID mice with human HCT116 cancer xenografts were imaged with (99m)Tc-TCP-1 or control peptide using a small-animal SPECT imager: Group I (n=5) received no blockade; Group II (n=5) received a blocking dose of non-radiolabeled TCP-1. Group III (n=5) were imaged with (99m)Tc-labeled control peptide (inactive peptide). SCID mice with human PC3 prostate cancer xenografts (Group IV, n=5) were also imaged with (99m)Tc-TCP-1. Eight additional SCID mice bearing HCT116 xenografts in dorsal skinfold window chambers (DSWC) were imaged by direct positron imaging of (18)F-fluorodeoxyglucose ((18)F-FDG) and fluorescence microscopy of Cy7-TCP-1. In vitro(99m)Tc-HYNIC-TCP-1 binding assays on HCT 116 cells indicated a mean Kd of 3.04±0.52nM. In cancer xenografts, (99m)Tc-TCP-1 radioactivity (%ID/g) was 1.01±0.15 in the absence of blockade and was reduced to 0.26±0.04 (P<0.01) with blockade. No radioactive uptake was observed in the PC3 tumors with (99m)Tc-TCP-1 or HCT116 tumors with inactive peptide. Cy7-TCP-1 activity localized not only in metabolically active tumors, as defined by (18)F-FDG imaging, but also in peritumoral microvasculature. In conclusion, TCP-1 probes may have a distinct targeting mechanism with high selectivity for CRC and tumor-associated vasculature. Molecular imaging with TCP-1 probes appears promising to detect malignant colorectal lesions.


Colonic Neoplasms/diagnostic imaging , Molecular Imaging/methods , Peptide Fragments/administration & dosage , Technetium/administration & dosage , Animals , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , HCT116 Cells , Humans , Mice , Mice, SCID , Peptide Fragments/metabolism , Protein Binding/physiology , Technetium/metabolism , Xenograft Model Antitumor Assays/methods
18.
Nucl Med Biol ; 43(8): 496-505, 2016 08.
Article En | MEDLINE | ID: mdl-27236285

UNLABELLED: Apoptosis of macrophages and smooth muscle cells is linked to atherosclerotic plaque destabilization. The apoptotic cascade leads to exposure of phosphatidylethanolamine (PE) on the outer leaflet of the cell membrane, thereby making apoptosis detectable using probes targeting PE. The objective of this study was to exploit capabilities of a PE-specific imaging probe, (99m)Tc-duramycin, in localizing atherosclerotic plaque and assessing plaque evolution in apolipoprotein-E knockout (ApoE(-/-)) mice. METHODS: Atherosclerosis was induced in ApoE(-/-) mice by feeding an atherogenic diet. (99m)Tc-duramycin images were acquired using a small-animal SPECT imager. Six ApoE(-/-) mice at 20weeks of age (Group I) were imaged and then sacrificed for ex vivo analyses. Six additional ApoE(-/-) mice (Group II) were imaged at 20 and 40weeks of age before sacrifice. Six ApoE wild-type (ApoE(+/+)) mice (Group III) were imaged at 40weeks as controls. Five additional ApoE(-/-) mice (40weeks of age) (Group IV) were imaged with a (99m)Tc-labeled inactive peptide, (99m)Tc-LinDUR, to assess (99m)Tc-duramycin targeting specificity. RESULTS: Focal (99m)Tc-duramycin uptake in the ascending aorta and aortic arch was detected at 20 and 40weeks in the ApoE(-/-) mice but not in ApoE(+/+) mice. (99m)Tc-duramycin uptake in the aortic lesions increased 2.2-fold on quantitative imaging in the ApoE(-/-) mice between 20 and 40weeks. Autoradiographic and histological data indicated significantly increased (99m)Tc-duramycin uptake in the ascending aorta and aortic arch associated with advanced plaques. Quantitative autoradiography showed that the ratio of activity in the aortic arch to descending thoracic aorta, which had no plaques or radioactive uptake, was 2.1 times higher at 40weeks than at 20weeks (6.62±0.89 vs. 3.18±0.29, P<0.01). There was barely detectable focal uptake of (99m)Tc-duramycin in the aortic arch of ApoE(+/+) mice. No detectable (99m)Tc-LinDUR uptake was observed in the aortas of ApoE(-/-) mice. CONCLUSIONS: PE-targeting properties of (99m)Tc-duramycin in the atherosclerotic mouse aortas were noninvasively characterized. (99m)Tc-duramycin is promising in localizing advanced atherosclerotic plaques.


Apolipoproteins E/deficiency , Bacteriocins/chemistry , Peptides/chemistry , Plaque, Atherosclerotic/diagnostic imaging , Technetium/chemistry , Tomography, Emission-Computed, Single-Photon/methods , Animals , Aorta/metabolism , Bacteriocins/metabolism , Biological Transport , Kinetics , Mice , Peptides/metabolism , Plaque, Atherosclerotic/metabolism
19.
Nucl Med Biol ; 42(7): 608-13, 2015 Jul.
Article En | MEDLINE | ID: mdl-25890861

This study attempted to evaluate the feasibility of (99m)Tc-labeled glucarate ((99m)Tc-GLA) imaging in non-small cell lung cancer (NSCLC) and the potential tumor uptake mechanism. Cell lysates from two NSCLC cell lines, H292 and H1975, were immunoblotted with anti-glucose transporter 5 (GLUT5) antibody for Western blotting. Thereafter, the two cell lines were used to examine cellular uptake of (99m)Tc-GLA with or without fructose. SPECT/CT imaging studies were performed on small animals bearing H292 and H1975 tumors. Biodistribution studies were also conducted to achieve accurate tissue uptake of this tracer in two tumor models. Hematoxylin & eosin (H&E) staining and GLUT5, Ki67 and cytokeratin-7 (CK-7) immunohistochemistry (IHC) analysis were further investigated on tumor tissues. In Western blotting, H292 cells showed higher levels of GLUT5 compared to the H1975 cells. Meanwhile, the in vitro cell assays indicated GLUT5-dependent uptake of (99m)Tc-GLA in H292 and H1975 cells. The fructose competition assays showed a significant decrease in (99m)Tc-GLA uptake by H292 and H1975 cells when fructose was added. The (99m)Tc-GLA accumulation was as much as two-fold higher in H292 implanted tumors than in H1975 implanted tumors. (99m)Tc-GLA exhibited rapid clearance pharmacokinetics and reasonable uptake in human NSCLC H292 (1.69±0.37 ID%/g) and H1975 (0.89±0.06 ID%/g) implanted tumors at 30min post injection. Finally, the expression of GLUT5, Ki67 and CK-7 on tumor tissues also exhibited positive correlation with the in vitro cell test results and in vivo SPECT/CT imaging results in xenograft tumors. Both in vitro and ex vivo studies demonstrated that the uptake of (99m)Tc-GLA in NSCLC is highly related to GLUT5 expression. Imaging and further IHC results support that (99m)Tc-GLA could be a promising SPECT imaging agent for NSCLC diagnosis and prognosis evaluation.


Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/metabolism , Glucaric Acid/pharmacokinetics , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/metabolism , Tomography, Emission-Computed, Single-Photon/methods , Animals , Cell Line, Tumor , Feasibility Studies , Humans , Male , Metabolic Clearance Rate , Mice , Mice, Inbred BALB C , Organ Specificity , Radiopharmaceuticals/pharmacokinetics , Technetium/pharmacokinetics , Tissue Distribution
20.
Arthritis Res Ther ; 17: 50, 2015 Mar 09.
Article En | MEDLINE | ID: mdl-25889786

INTRODUCTION: Development of non-invasive molecular imaging techniques that are based on cellular changes in inflammation has been of active interest for arthritis diagnosis. This technology will allow real-time detection of tissue damage and facilitate earlier treatment of the disease, thus representing an improvement over X-rays, which detect bone damage at the advanced stage. Tracing apoptosis, an event occurring in inflammation, has been a strategy used. PSVue 794 is a low-molecular-weight, near-infrared (NIR)-emitting complex of bis(zinc2+-dipicolylamine) (Zn-DPA) that binds to phosphatidylserine (PS), a plasma membrane anionic phospholipid that becomes flipped externally upon cell death by apoptosis. In this study, we evaluated the capacity of PSVue 794 to act as an in vivo probe for non-invasive molecular imaging assessment of rheumatoid arthritis (RA) via metabolic function in murine collagen-induced arthritis, a widely adopted animal model for RA. METHODS: Male DBA/1 strain mice were treated twice with chicken collagen type II in Freund's adjuvant. Their arthritis development was determined by measuring footpad thickness and confirmed with X-ray analysis and histology. In vivo imaging was performed with the NIR dye and the LI-COR Odyssey Image System. The level of emission was compared among mice with different disease severity, non-arthritic mice and arthritic mice injected with a control dye without the Zn-DPA targeting moiety. RESULTS: Fluorescent emission correlated reliably with the degree of footpad swelling and the manifestation of arthritis. Ex vivo examination showed emission was from the joint. Specificity of binding was confirmed by the lack of emission when arthritic mice were given the control dye. Furthermore, the PS-binding protein annexin V displaced the NIR dye from binding, and the difference in emission was numerically measurable on a scale. CONCLUSIONS: This report introduces an economical alternative method for assessing arthritis non-invasively in murine models. Inflammation in feet and ankles can be measured longitudinally using the PSVue 794 probe for cell death and with a commonly available multipurpose imager. This technique provides metabolic and functional information that anatomical measurement of footpad swelling or visual determination of arthritic index cannot. It also may decrease the number of animals required per experiment because tissue damage will not necessarily require evaluation by harvesting joints for histology.


Arthritis, Experimental/diagnosis , Carboxy-Lyases , Diagnostic Imaging/methods , Spectroscopy, Near-Infrared/methods , Animals , Arthritis, Experimental/chemically induced , Collagen Type II/toxicity , Male , Mice , Mice, Inbred DBA
...