Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Protoc ; 1(12): e322, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34898042

RESUMEN

Ongoing technological advancements continually increase the demand for energy. Among various types of energy harvesting systems, biologically based systems have been an area of increasing interest for the past couple of decades. Such systems provide clean, safe power solutions, mainly for low- and ultra-low-power applications. The microphotosynthetic power cell (µPSC) is one such system that make use of photosynthetic living cells or organisms to generate power. For strong performance, µPSC technology, because of its interdisciplinary nature, requires optimal engineering of both electrochemical cell design and the culture conditions of the photosynthetic microorganisms. We present here a simple, economical culture method for the photosynthetic microorganism Chlamydomonas reinhardtii suitable for the application of this biologically based power system in any geographical location. This article provides a series of protocols for preparing materials and culture medium designed to facilitate the culture of a suitable C. reinhardtii strain even in a non-biological laboratory. Possible challenges and methods to overcome them are also discussed. Cultured C. reinhardtii perform sufficiently well that they have already been successfully utilized to generate power from a µPSC, generating a peak power of 200 µW from just 2 ml of exponential-phase algal culture in a µPSC with an active electrode surface area of 4.84 cm2 . The µPSC thus has potentially broad applications in low- and ultra-low-power devices and sensors. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Algal growth conditions and algal growth chamber fabrication Basic Protocol 2: Preparation of Tris-acetate-phosphate (TAP) nutrient medium Basic Protocol 3: Preparation of suspension algal culture from algal strain Basic Protocol 4: Preparation of stock culture plates (algal strain) from suspension algal culture.


Asunto(s)
Chlamydomonas reinhardtii , Microfluídica , Fotosíntesis , Fenómenos Físicos
2.
Cell Death Discov ; 7(1): 241, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526485

RESUMEN

Triple-negative breast cancers (TNBCs) are characterized by poor survival, prognosis, and gradual resistance to cytotoxic chemotherapeutics, like doxorubicin (DOX). The clinical utility of DOX is limited by its cardiotoxic and chemoresistant effects that manifest over time. To induce chemoresistance, TNBC rewires oncogenic gene expression and cell signaling pathways. Recent studies have demonstrated that reprogramming of branched-chain amino acids (BCAAs) metabolism facilitates tumor growth and survival. Branched-chain ketoacid dehydrogenase kinase (BCKDK), a regulatory kinase of the rate-limiting enzyme of the BCAA catabolic pathway, is reported to activate RAS/RAF/MEK/ERK signaling to promote tumor cell proliferation. However, it remains unexplored if BCKDK action remodels TNBC proliferation and survival per se and influences susceptibility to DOX-induced genotoxic stress. TNBC cells treated with DOX exhibited reduced BCKDK expression and intracellular BCKAs. Genetic and pharmacological inhibition of BCKDK in TNBC cell lines also showed a similar reduction in intracellular and secreted BCKAs. BCKDK silencing in TNBC cells downregulated mitochondrial metabolism genes, reduced electron complex protein expression, oxygen consumption, and ATP production. Transcriptome analysis of BCKDK silenced cells confirmed dysregulation of mitochondrial metabolic networks and upregulation of the apoptotic signaling pathway. Furthermore, BCKDK inhibition with concurrent DOX treatment exacerbated apoptosis, caspase activity, and loss of TNBC proliferation. Inhibition of BCKDK in TNBC also upregulated sestrin 2 and concurrently decreased mTORC1 signaling and protein synthesis. Overall, loss of BCKDK action in TNBC remodels BCAA flux, reduces protein translation triggering cell death, ATP insufficiency, and susceptibility to genotoxic stress.

3.
Biosens Bioelectron ; 194: 113585, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34517262

RESUMEN

Extracellular vesicles (EVs) are the cell-derived vesicles which play a critical role in cell-to-cell communication, and disease progression. These vesicles contain a myriad of substances like RNA, DNA, proteins, and lipids from their origin cells, offering a good source of biomarkers. The existing methods for the isolation of EVs are time-consuming, lack yield and purity, and expensive. In this work, we present a magnetic particle based liquid biopsy chip for the isolation of EVs by using a synthetic peptide, Vn96. To ensure capture efficiency, a 3D mixer is integrated in the chip, along with a sedimentation unit, which allows EV-captured magnetic particles to settle in it based on gravity assisted sedimentation. The captured EVs are then isolated for their elution and validation. The EVs are characterized by the scanning electron microscopy (SEM) measurements and the ability of capture and isolation of EVs is validated by the nanoparticle tracking analysis (NTA) and atomic force microscopy (AFM). The DNA content of the EVs is further characterized by the absolute quantification of a housekeeping gene (RNase P) copies using droplet digital PCR (ddPCR). The results show that the chip can capture and isolate the EVs, without affecting their morphology. Thus, the liquid biopsy chip can be considered as a potential point of care device for diagnostics in a clinical setting.


Asunto(s)
Técnicas Biosensibles , Vesículas Extracelulares , Amplificación de Genes , Biopsia Líquida , Fenómenos Magnéticos
4.
Front Oncol ; 6: 37, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26925390

RESUMEN

Glycosylation is one of the key components influencing several signaling pathways implicated in cell survival and growth. The Notch signaling pathway plays a pivotal role in numerous cell fate specifications during metazoan development. Both Notch and its ligands are repeatedly glycosylated by the addition of sugar moieties, such as O-fucose, O-glucose, or O-xylose, to bring about structural and functional changes. Disruption to glycosylation processes of Notch proteins result in developmental disorders and disease, including cancer. This review summarizes the importance and recent updates on the role of glycosylated Notch proteins in tumorigenesis and tumor metastasis.

6.
Biomicrofluidics ; 2(3): 34102, 2008 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19693369

RESUMEN

90 kDa heat shock protein (HSP90) is a ubiquitous molecular chaperone and is one of the abundant proteins present in a cell under normal and stressed conditions. The adenosine triphosphate (ATP) binding region of HSP90 is currently under a great degree of study because of the interest of its role in cancer and protein maintenance; the binding of ATP to HSP90 induces a large conformational change in the protein as a result of the activity of different types of stressors within the cells. In the present paper, a simple microfluidic biosensor is proposed for the characterization of ATP-HSP90 interactions through the principle of bioresistive variation. The experimental results prove that the present biosensor system is highly suitable for the detection of heat shock proteins present in a real-time biological sample, which is very useful for in-situ biomedical applications and rapid pathogenic detections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...