Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Antiviral Res ; 227: 105904, 2024 May 08.
Article En | MEDLINE | ID: mdl-38729306

Despite considerable progress in developing vaccines and antivirals to combat COVID-19, the rapid mutations of the SARS-CoV-2 genome have limited the durability and efficacy of the current vaccines and therapeutic interventions. Hence, it necessitates the development of novel therapeutic approaches or repurposing existing drugs that target either viral life cycle, host factors, or both. Here, we report that SRX3177, a potent triple-activity CDK4/6-PI3K-BET inhibitor, blocks replication of the SARS-CoV-2 Omicron variant with IC50 values at sub-micromolar concentrations without any impact on the cell proliferation of Calu-3 cells at and below its IC50 concentration. When SRX3177 is combined with EIDD-1931 (active moiety of a small-molecule prodrug Molnupiravir) or MU-UNMC-2 (a SARS-CoV-2 entry inhibitor) at a fixed doses matrix, a synergistic effect was observed, leading to the significant reduction in the dose of the individual compounds to achieve similar inhibition of SARS-CoV-2 replication. Herein, we report that the combination of SRX3177/MPV or SRX3177/UM-UNMC-2 has the potential for further development as a combinational therapy against SARS-CoV-2 and in any future outbreak of beta coronavirus.

2.
Drug Discov Today ; 29(3): 103904, 2024 Mar.
Article En | MEDLINE | ID: mdl-38280625

To combat multifactorial refractory diseases, such as cancer, cardiovascular, and neurodegenerative diseases, multitarget drugs have become an emerging area of research aimed at 'synthetic lethality' (SL) relationships associated with drug-resistance mechanisms. In this review, we discuss the in silico design of dual and triple-targeted ligands, strategies by which specific 'warhead' groups are incorporated into a parent compound or scaffold with primary inhibitory activity against one target to develop one small molecule that inhibits two or three molecular targets in an effort to increase potency against multifactorial diseases. We also discuss the analytical exploration of structure-activity relationships (SARs), physicochemical properties, polypharmacology, scaffold feature extraction of US Food and Drug Administration (FDA)-approved multikinase inhibitors (MKIs), and updates regarding the clinical status of dual-targeted chemotypes.


Drug Discovery , Polypharmacology , Structure-Activity Relationship , Pharmaceutical Preparations , Ligands , Drug Design
4.
Biomed Chromatogr ; 37(8): e5643, 2023 Aug.
Article En | MEDLINE | ID: mdl-37042063

A sensitive and selective liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitation of dual PI3K/BRD4 inhibitor SF2523 in mouse plasma. The analysis was performed on a UPLC system connected to a Shimadzu 8060 mass spectrometer by electrospray ionization in positive multiple reaction monitoring mode. Chromatographic separation was carried out on an ACE Excel C18 column with a gradient elution containing 0.1% formic acid and methanol as the mobile phase. The linearity was conducted in the concentration range 0.1-500 ng/ml for SF2523 in 100 µl of plasma. The inter- and intra-batch precision (RSD) were both lower than 13.5%, with the accuracy (percentage bias) ranging from -10.03 to 11.56%. The validated method was successfully applied to plasma protein binding and in vitro metabolism studies. SF2523 was highly bound to mouse plasma proteins (>95% bound). Utilizing mouse S9 fractions, a total of seven phase I and II metabolites were identified with hydroxylation found to be the major metabolic pathway. Metabolite identification included analysis of retention behaviors, molecular weight changes and MS/MS fragment patterns of SF2523 and the metabolites. This newly developed and validated method allows the rapid and easy determination of the SF2523 concentration with high sensitivity in a low sample volume and can be applied to future pre-clinical studies.


Nuclear Proteins , Tandem Mass Spectrometry , Mice , Animals , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Phosphatidylinositol 3-Kinases , Chromatography, High Pressure Liquid/methods , Protein Binding , Transcription Factors , Blood Proteins , Reproducibility of Results
5.
Mol Biomed ; 3(1): 2, 2022 Jan 15.
Article En | MEDLINE | ID: mdl-35031886

Mantle cell lymphoma (MCL) is a subtype of non-Hodgkin's lymphoma characterized by poor prognosis. The complexity of MCL pathogenesis arises from aberrant activities of diverse signaling pathways, including BTK, PI3K-AKT-mTOR and MYC-BRD4. Here, we report that MCL-related signaling pathways can be altered by a single small molecule inhibitor, SRX3305. Binding and kinase activities along with resonance changes in NMR experiments reveal that SRX3305 targets both bromodomains of BRD4 and is highly potent in inhibition of the PI3K isoforms α, γ and δ, as well as BTK and the drug-resistant BTK mutant. Preclinical investigations herein reveal that SRX3305 perturbs the cell cycle, promotes apoptosis in MCL cell lines and shows dose dependent anti-proliferative activity in both MCL and drug-resistant MCL cells. Our findings underscore the effectiveness of novel multi-action small molecule inhibitors for potential treatment of MCL.

6.
Mol Cancer Res ; 20(2): 305-318, 2022 02.
Article En | MEDLINE | ID: mdl-34670863

High-risk human papillomaviruses (HPV), exemplified by HPV16/18, are causally linked to human cancers of the anogenital tract, skin, and upper aerodigestive tract. Previously, we identified Ecdysoneless (ECD) protein, the human homolog of the Drosophila ecdysoneless gene, as a novel HPV16 E6-interacting protein. Here, we show that ECD, through its C-terminal region, selectively binds to high-risk but not to low-risk HPV E6 proteins. We demonstrate that ECD is overexpressed in cervical and head and neck squamous cell carcinoma (HNSCC) cell lines as well as in tumor tissues. Using The Cancer Genome Atlas dataset, we show that ECD mRNA overexpression predicts shorter survival in patients with cervical and HNSCC. We demonstrate that ECD knockdown in cervical cancer cell lines led to impaired oncogenic behavior, and ECD co-overexpression with E7 immortalized primary human keratinocytes. RNA-sequencing analyses of SiHa cells upon ECD knockdown showed to aberrations in E6/E7 RNA splicing, as well as RNA splicing of several HPV oncogenesis-linked cellular genes, including splicing of components of mRNA splicing machinery itself. Taken together, our results support a novel role of ECD in viral and cellular mRNA splicing to support HPV-driven oncogenesis. IMPLICATIONS: This study links ECD overexpression to poor prognosis and shorter survival in HNSCC and cervical cancers and identifies a critical role of ECD in cervical oncogenesis through regulation of viral and cellular mRNA splicing.


Carrier Proteins/metabolism , Oncogenes/genetics , RNA Splicing/genetics , RNA, Messenger/metabolism , Uterine Cervical Neoplasms/genetics , Female , Humans , Transfection
7.
Front Oncol ; 11: 766888, 2021.
Article En | MEDLINE | ID: mdl-34926269

The PI3K/Akt pathway-and in particular PI3Kδ-is known for its role in drug resistant B-cell acute lymphoblastic leukemia (B-ALL) and it is often upregulated in refractory or relapsed B-ALL. Myc proteins are transcription factors responsible for transcribing pro-proliferative genes and c-Myc is often overexpressed in cancers. The chromatin regulator BRD4 is required for expression of c-Myc in hematologic malignancies including B-ALL. Previously, combination of BRD4 and PI3K inhibition with SF2523 was shown to successfully decrease Myc expression. However, the underlying mechanism and effect of dual inhibition of PI3Kδ/BRD4 in B-ALL remains unknown. To study this, we utilized SF2535, a novel small molecule dual inhibitor which can specifically target the PI3Kδ isoform and BRD4. We treated primary B-ALL cells with various concentrations of SF2535 and studied its effect on specific pharmacological on-target mechanisms such as apoptosis, cell cycle, cell proliferation, and adhesion molecules expression usingin vitro and in vivo models. SF2535 significantly downregulates both c-Myc mRNA and protein expression through inhibition of BRD4 at the c-Myc promoter site and decreases p-AKT expression through inhibition of the PI3Kδ/AKT pathway. SF2535 induced apoptosis in B-ALL by downregulation of BCL-2 and increased cleavage of caspase-3, caspase-7, and PARP. Moreover, SF2535 induced cell cycle arrest and decreased cell counts in B-ALL. Interestingly, SF2535 decreased the mean fluorescence intensity (MFI) of integrin α4, α5, α6, and ß1 while increasing MFI of CXCR4, indicating that SF2535 may work through inside-out signaling of integrins. Taken together, our data provide a rationale for the clinical evaluation of targeting PI3Kδ/BRD4 in refractory or relapsed B-ALL using SF2535.

8.
iScience ; 24(9): 102931, 2021 Sep 24.
Article En | MEDLINE | ID: mdl-34557659

Mantle cell lymphoma (MCL) is an aggressive subtype of non-Hodgkin's lymphoma and one of the most challenging blood cancers to combat due to frequent relapse after treatment. Here, we developed the first-in-class BTK/PI3K/BRD4 axis inhibitor SRX3262, which simultaneously blocks three interrelated MCL driver pathways - BTK, PI3K-AKT-mTOR and MYC. SRX3262 concomitantly binds to BTK, PI3K, and BRD4, exhibits potent in vitro and in vivo activity against MCL, and overcomes the Ibrutinib resistance resulting from the BTK-C481S mutation. Our results reveal that SRX3262 inhibits IgM-induced BTK and AKT phosphorylation and abrogates binding of BRD4 to MYC loci. SRX3262 promotes c-MYC destabilization, induces cell cycle arrest and apoptosis, and shows antitumor activity in in vivo xenograft models. Together, our study provides mechanistic insights and rationale for the use of the triple BTK/PI3K/BRD4 activity inhibitors as a new approach to treat MCL.

9.
PLoS One ; 16(3): e0248941, 2021.
Article En | MEDLINE | ID: mdl-33784323

Synthetic lethality is a successful strategy employed to develop selective chemotherapeutics against cancer cells. Inactivation of RAD52 is synthetically lethal to homologous recombination (HR) deficient cancer cell lines. Replication protein A (RPA) recruits RAD52 to repair sites, and the formation of this protein-protein complex is critical for RAD52 activity. To discover small molecules that inhibit the RPA:RAD52 protein-protein interaction (PPI), we screened chemical libraries with our newly developed Fluorescence-based protein-protein Interaction Assay (FluorIA). Eleven compounds were identified, including FDA-approved drugs (quinacrine, mitoxantrone, and doxorubicin). The FluorIA was used to rank the compounds by their ability to inhibit the RPA:RAD52 PPI and showed mitoxantrone and doxorubicin to be the most effective. Initial studies using the three FDA-approved drugs showed selective killing of BRCA1-mutated breast cancer cells (HCC1937), BRCA2-mutated ovarian cancer cells (PE01), and BRCA1-mutated ovarian cancer cells (UWB1.289). It was noteworthy that selective killing was seen in cells known to be resistant to PARP inhibitors (HCC1937 and UWB1 SYr13). A cell-based double-strand break (DSB) repair assay indicated that mitoxantrone significantly suppressed RAD52-dependent single-strand annealing (SSA) and mitoxantrone treatment disrupted the RPA:RAD52 PPI in cells. Furthermore, mitoxantrone reduced radiation-induced foci-formation of RAD52 with no significant activity against RAD51 foci formation. The results indicate that the RPA:RAD52 PPI could be a therapeutic target for HR-deficient cancers. These data also suggest that RAD52 is one of the targets of mitoxantrone and related compounds.


Homologous Recombination , Neoplasms/metabolism , Neoplasms/pathology , Rad52 DNA Repair and Recombination Protein/metabolism , Replication Protein A/metabolism , Apoptosis/drug effects , BRCA1 Protein/deficiency , BRCA1 Protein/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , DNA Damage , DNA Repair/drug effects , Doxorubicin/pharmacology , Fluorescence , High-Throughput Screening Assays , Homologous Recombination/drug effects , Humans , Mitoxantrone/pharmacology , Protein Binding/drug effects , Quinacrine/pharmacology , Small Molecule Libraries/pharmacology
11.
Sci Rep ; 10(1): 12027, 2020 07 21.
Article En | MEDLINE | ID: mdl-32694708

Development of small molecule compounds that target several cancer drivers has shown great therapeutic potential. Here, we developed a new generation of highly potent thienopyranone (TP)-based inhibitors for the BET bromodomains (BDs) of the transcriptional regulator BRD4 that have the ability to simultaneously bind to phosphatidylinositol-3 kinase (PI3K) and/or cyclin-dependent kinases 4/6 (CDK4/6). Analysis of the crystal structures of the complexes, NMR titration experiments and IC50 measurements reveal the molecular basis underlying the inhibitory effects and selectivity of these compounds toward BDs of BRD4. The inhibitors show robust cytotoxic effects in multiple cancer cell lines and induce cell-cycle arrest and apoptosis. We further demonstrate that concurrent disruption of the acetyllysine binding function of BRD4 and the kinase activities of PI3K and CDK4/6 by the TP inhibitor improves efficacy in several cancer models. Together, these findings provide further compelling evidence that these multi-action inhibitors are efficacious and more potent than single inhibitory chemotypes.


Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Design , Proteins/antagonists & inhibitors , Proteins/metabolism , Synthetic Lethal Mutations , Animals , Binding Sites , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Mice , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Proteins/chemistry , Spectrum Analysis , Structure-Activity Relationship , Xenograft Model Antitumor Assays
12.
PLoS One ; 11(7): e0159092, 2016.
Article En | MEDLINE | ID: mdl-27467502

Glioma amplified sequence 41(GAS41) is a potent transcription factor that play a crucial role in cell proliferation and survival. In glioblastoma, the expression of GAS41 at both transcriptional and post transcriptional level needs to be tightly maintained in response to cellular signals. Micro RNAs (miRNA) are small non coding RNA that act as important regulators for modulating the expression of various target genes. Studies have shown that several miRNAs play role in the post-transcriptional regulation of GAS41. Here we identified GAS41 as a novel target for endogenous miR-203 and demonstrate an inverse correlation of miR-203 expression with GAS41 in glioma cell lines (HNGC2 and U87). Over expression of miR-203 negatively regulates GAS41 expression in U87 and HNGC2 cell lines. Moreover, miR-203 restrained miR-10b action by suppressing GAS41. GAS41 is essential for repressing p53 in tumor suppressor pathway during cell proliferation. Enforced expression of GAS41 produced contradictory effect on miR-203 but was able to enhance p53 tumor suppressor pathway associated protein. It was also found that miR-203 maintains the stability of p53 as knock down of p53 expression using siRNA resulted in down regulation of pri-miR and mature miR-203 expression. Conversely reconstitution of miR-203 expression induced apoptosis and inhibited migratory property of glioma cells. Taken together, we show that miR-203 is a key negative regulator of GAS41 and acts as tumor suppressor microRNA in glioma.


Brain Neoplasms/pathology , Cell Proliferation/genetics , Glioblastoma/pathology , MicroRNAs/genetics , Neoplasm Metastasis/genetics , Transcription Factors/genetics , Apoptosis , Brain Neoplasms/genetics , Cell Line, Tumor , Down-Regulation , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism
13.
Life Sci ; 151: 264-276, 2016 Apr 15.
Article En | MEDLINE | ID: mdl-26979778

AIMS: Breast cancer is highly resistant to chemotherapeutic approach and hence, alternative strategies have been developed to fight against this heterogeneous group of disease. In particular, many studies have demonstrated about various drugs for the treatment of breast cancer. In our study, we assessed the anti-angiogenenic activities of Bisindole-PBD (5b) in MCF-7 and MDA-MB-231 cell lines. MAIN METHODS: In vitro Endothelial Cell (HUVEC) Tube Formation Assay was performed to show inhibitory role of 5b along with its role upon wound healing process in breast cancer cells in vitro. Semi-quantitative reverse transcription PCR (RT-PCR) was also done to examine the expression of VEGF in response to 5b in breast cancer cells and in HUVEC cells. siRNA transfection study explored STAT3 mediated VEGF transcription in breast cancer cells MCF-7 and MDA-MB-231. CAM assay was performed to see the role of 5b on vessel formation in chicken embryo. KEY FINDINGS: From in vitro data we have demonstrated that 5b played a role in regulation of breast cancer cell proliferation by inhibiting angiogenesis. Test drug 5b suppressed the expression VEGF at both transcriptional and post transcriptional levels. Apart from this, there was significant down regulation in STAT3 level after drug treatment, which was found to be involved in the VEGF transcription. Metastasis related MMP-2 and MMP-9 expressions were also modulated by 5b. In vivo study by Chick Chorioallantoic Membrane (CAM) Assay also showed anti-angiogenesis role of the test drug which was consistent with the in vitro data. SIGNIFICANCE: Altogether, our data demonstrated 5b as potent small molecule with anti-angiogenic activities.


Angiogenesis Inhibitors/pharmacology , Dioxins/pharmacology , Indoles/pharmacology , Neovascularization, Pathologic/metabolism , STAT3 Transcription Factor/metabolism , Vascular Endothelial Growth Factor A/biosynthesis , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Chick Embryo , Down-Regulation/drug effects , Female , Humans , Matrix Metalloproteinase 2/biosynthesis , Matrix Metalloproteinase 9/biosynthesis , Neovascularization, Pathologic/drug therapy , Wound Healing/drug effects
14.
ChemMedChem ; 5(11): 1937-47, 2010 Nov 08.
Article En | MEDLINE | ID: mdl-20836120

A new class of imidazo[2,1-b]thiazole chalcone derivatives were synthesized and evaluated for their anticancer activity. These chalcone derivatives show promising activity, with log GI(50) values ranging from -7.51 to -4.00. The detailed biological aspects of these derivatives toward the MCF-7 cell line were studied. Interestingly, these chalcone derivatives induced G(0)/G(1)-phase cell-cycle arrest, down-regulation of G(1)-phase cell-cycle regulatory proteins such as cyclin D1 and cyclin E1, and up-regulation of CDK4. Moreover, these compounds elicit the characteristic features of apoptosis such as enhancement in the levels of p53, p21, and p27, suppression of NF-κB, and up-regulation of caspase-9. One of these chalcone derivatives, 3 d, is potentially well suited for detailed biological studies, either alone or in combination with existing therapies.


Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Chalcone/chemical synthesis , Chalcone/pharmacology , Antineoplastic Agents/chemistry , Caspase 9/metabolism , Cell Line, Tumor , Chalcone/chemistry , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Female , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacology , NF-kappa B/metabolism , Thiazoles/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology
...