Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Med Chem ; 67(13): 11103-11124, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38907711

RESUMEN

A hit-to-lead campaign pursuing the identification of novel inhalant small-molecule phosphatidylinositol 3-kinase (PI3K) inhibitors for the treatment of inflammatory respiratory diseases is disclosed. A synthetically versatile pyridazin-3(2H)-one scaffold was designed, and three exit vectors on the core moiety were used to explore chemical diversity and optimize pharmacological and absorption, distribution, metabolism, and excretion (ADME) properties. Desired modulation of PI3Kδ selectivity and cellular potency as well as ADME properties in view of administration by inhalation was achieved. Intratracheal administration of lead compound 26 resulted in a promising pharmacokinetic profile, thus demonstrating that the optimization strategy of in vitro profiles successfully translated to an in vivo setting.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Inhibidores de las Quinasa Fosfoinosítidos-3 , Piridazinas , Animales , Humanos , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/química , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacocinética , Inhibidores de las Quinasa Fosfoinosítidos-3/síntesis química , Administración por Inhalación , Piridazinas/química , Piridazinas/farmacología , Piridazinas/farmacocinética , Piridazinas/síntesis química , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Relación Estructura-Actividad , Descubrimiento de Drogas , Ratas , Ratones , Masculino , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/administración & dosificación
2.
Int J Med Inform ; 184: 105351, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38295584

RESUMEN

INTRODUCTION: A proper nutrition is essential for human life. Recently, special attention on this topic has been given in relation to three health statuses: obesity, malnutrition and specific diseases that can be related to food or treated with specific diets. Mobile technology is often used to assist users that wish to regulate their eating habits, and identifying which fields of application have been explored the most by the app developers and which main functionalities have been adopted can be useful in view of future app developments. METHODS: We selected 322 articles mentioning nutrition support apps through a literature database search, all of which have undergone an initial screening. After the exclusion of papers that were already reviews, not presenting apps or not focused on nutrition, not relevant or not developed for human subjects, 100 papers were selected for subsequent analyses that aimed at identifying the main treated conditions, outcome measures and functionalities implemented in the Apps. RESULTS: Of the selected studies, 33 focus on specific diseases, 24 on obesity, 2 on malnutrition and 41 on other targets (e.g., weight/diet control). Type 2 diabetes is the most targeted disease, followed by gestational diabetes, hypertension, colorectal cancer and CVDs which all were targeted by more than one app. Most Apps include self-monitoring and coaching functionalities, educational content and artificial intelligence (AI) tools are slightly less common, whereas counseling, gamification and questionnaires are the least implemented. Body weight and calories/nutrients were the most common general outcome measures, while glycated hemoglobin (HbA1c) was the most common clinical outcome. No statistically significant differences in the effectiveness of the different functionalities were found. CONCLUSION: The use of mobile technology to improve nutrition has been widely explored in the last years, especially for weight control and specific diseases like diabetes; however, other food-related conditions such as Irritable Bowel Diseases appear to be less targeted by newly developed smartphone apps and their related studies. All different kinds of functionalities appear to be equally effective, but further specific studies are needed to confirm the results.


Asunto(s)
Diabetes Mellitus Tipo 2 , Desnutrición , Aplicaciones Móviles , Humanos , Teléfono Inteligente , Diabetes Mellitus Tipo 2/terapia , Inteligencia Artificial , Obesidad/terapia
3.
Sci Rep ; 13(1): 11631, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468698

RESUMEN

The COVID-19 pandemic has been a catastrophic event that has seriously endangered the world's population. Governments have largely been unprepared to deal with such an unprecedented calamity, partially due to the lack of sufficient or adequately fine-grained data necessary for forecasting the pandemic's evolution. To fill this gap, researchers worldwide have been collecting data about different aspects of COVID-19's evolution and government responses to them so as to provide the foundation for informative models and tools that can be used to mitigate the current pandemic and possibly prevent future ones. Indeed, since the early stages of the pandemic, a number of research initiatives were launched with this goal, including the PERISCOPE (Pan-European Response to the ImpactS of COVID-19 and future Pandemics and Epidemics) Project, funded by the European Commission. PERISCOPE aims to investigate the broad socio-economic and behavioral impacts of the COVID-19 pandemic, with the goal of making Europe more resilient and prepared for future large-scale risks. The purpose of this study, carried out as part of the PERISCOPE project, is to provide a first European-level analysis of the effect of government policies on the spread of the virus. To do so, we assessed the relationship between a novel index, the Policy Intensity Index, and four epidemiological variables collected by the European Centre for Disease Control and Prevention, and then applied a comprehensive Pan-European population model based on Multilevel Vector Autoregression. This model aims at identifying effects that are common to some European countries while treating country-specific policies as covariates, explaining the different evolution of the pandemic in nine selected countries due to data availability: Spain, France, Netherlands, Latvia, Slovenia, Greece, Ireland, Cyprus, Estonia. Results show that specific policies' effectiveness tend to vary consistently within the different countries, although in general policies related to Health Monitoring and Health Resources are the most effective for all countries.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , Políticas , Francia , Chipre
4.
Artif Intell Med ; 142: 102588, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316101

RESUMEN

BACKGROUND: Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder characterised by the progressive loss of motor neurons in the brain and spinal cord. The fact that ALS's disease course is highly heterogeneous, and its determinants not fully known, combined with ALS's relatively low prevalence, renders the successful application of artificial intelligence (AI) techniques particularly arduous. OBJECTIVE: This systematic review aims at identifying areas of agreement and unanswered questions regarding two notable applications of AI in ALS, namely the automatic, data-driven stratification of patients according to their phenotype, and the prediction of ALS progression. Differently from previous works, this review is focused on the methodological landscape of AI in ALS. METHODS: We conducted a systematic search of the Scopus and PubMed databases, looking for studies on data-driven stratification methods based on unsupervised techniques resulting in (A) automatic group discovery or (B) a transformation of the feature space allowing patient subgroups to be identified; and for studies on internally or externally validated methods for the prediction of ALS progression. We described the selected studies according to the following characteristics, when applicable: variables used, methodology, splitting criteria and number of groups, prediction outcomes, validation schemes, and metrics. RESULTS: Of the starting 1604 unique reports (2837 combined hits between Scopus and PubMed), 239 were selected for thorough screening, leading to the inclusion of 15 studies on patient stratification, 28 on prediction of ALS progression, and 6 on both stratification and prediction. In terms of variables used, most stratification and prediction studies included demographics and features derived from the ALSFRS or ALSFRS-R scores, which were also the main prediction targets. The most represented stratification methods were K-means, and hierarchical and expectation-maximisation clustering; while random forests, logistic regression, the Cox proportional hazard model, and various flavours of deep learning were the most widely used prediction methods. Predictive model validation was, albeit unexpectedly, quite rarely performed in absolute terms (leading to the exclusion of 78 eligible studies), with the overwhelming majority of included studies resorting to internal validation only. CONCLUSION: This systematic review highlighted a general agreement in terms of input variable selection for both stratification and prediction of ALS progression, and in terms of prediction targets. A striking lack of validated models emerged, as well as a general difficulty in reproducing many published studies, mainly due to the absence of the corresponding parameter lists. While deep learning seems promising for prediction applications, its superiority with respect to traditional methods has not been established; there is, instead, ample room for its application in the subfield of patient stratification. Finally, an open question remains on the role of new environmental and behavioural variables collected via novel, real-time sensors.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Inteligencia Artificial , Encéfalo , Análisis por Conglomerados , Bases de Datos Factuales
5.
Eur J Med Chem ; 254: 115331, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37094451

RESUMEN

PI3Kδ is a lipid kinase which plays a key role in airway inflammatory conditions. Accordingly, the inhibition of PI3Kδ can be considered a valuable strategy for the treatment of chronic respiratory diseases such as Asthma and Chronic obstructive pulmonary disease (COPD). In this work, we describe our efforts to identify new PI3Kδ inhibitors following an "inhalation by design" strategy. Starting from the identification of a purine scaffold, we carried out a preliminary SAR expansion which led to the identification of a new hit characterized by a high enzymatic potency and moderate PI3Kδ selectivity. A subsequent optimization led to novel purine based derivatives with favorable in vitro ADME profiles, which might represent promising starting points for future development of new inhaled drug candidates.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Asma/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Administración por Inhalación , Purinas/farmacología , Purinas/uso terapéutico , Fosfatidilinositol 3-Quinasa Clase I
6.
J Chem Inf Model ; 63(9): 2842-2856, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37053454

RESUMEN

The residence time (RT), the time for which a drug remains bound to its biological target, is a critical parameter for drug design. The prediction of this key kinetic property has been proven to be challenging and computationally demanding in the framework of atomistic simulations. In the present work, we setup and applied two distinct metadynamics protocols to estimate the RTs of muscarinic M3 receptor antagonists. In the first method, derived from the conformational flooding approach, the kinetics of unbinding is retrieved from a physics-based parameter known as the acceleration factor α (i.e., the running average over time of the potential deposited in the bound state). Such an approach is expected to recover the absolute RT value for a compound of interest. In the second method, known as the tMETA-D approach, a qualitative estimation of the RT is given by the time of simulation required to drive the ligand from the binding site to the solvent bulk. This approach has been developed to reproduce the change of experimental RTs for compounds targeting the same target. Our analysis shows that both computational protocols are able to rank compounds in agreement with their experimental RTs. Quantitative structure-kinetics relationship (SKR) models can be identified and employed to predict the impact of a chemical modification on the experimental RT once a calibration study has been performed.


Asunto(s)
Simulación de Dinámica Molecular , Receptor Muscarínico M3 , Cinética , Ligandos , Física
8.
Artículo en Inglés | MEDLINE | ID: mdl-35897503

RESUMEN

Since the start of the 21st century, the world has not confronted a more serious threat to global public health than the COVID-19 pandemic. While governments initially took radical actions in response to the pandemic to avoid catastrophic collapse of their health care systems, government policies have also had numerous knock-on socioeconomic, political, behavioral and economic effects. Researchers, thus, have a unique opportunity to forward our collective understanding of the modern world and to respond to the emergency situation in a way that optimizes resources and maximizes results. The PERISCOPE project, funded by the European Commission, brings together a large number of research institutions to collect data and carry out research to understand all the impacts of the pandemic, and create predictive models that can be used to optimize intervention strategies and better face possible future health emergencies. One of the main tangible outcomes of this project is the PERISCOPE Atlas: an interactive tool that allows to visualize and analyze COVID-19-related health, economic and sociopolitical data, featuring a WebGIS and several dashboards. This paper describes the first release of the Atlas, listing the data sources used, the main functionalities and the future development.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Atención a la Salud , Salud Global , Gobierno , Humanos , Pandemias
9.
PLoS One ; 17(3): e0263265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35344546

RESUMEN

In the last century, the increase in traffic, human activities and industrial production have led to a diffuse presence of air pollution, which causes an increase of risk of several health conditions such as respiratory diseases. In Europe, air pollution is a serious concern that affects several areas, one of the worst ones being northern Italy, and in particular the Po Valley, an area characterized by low air quality due to a combination of high population density, industrial activity, geographical factors and weather conditions. Public health authorities and local administrations are aware of this problem, and periodically intervene with temporary traffic limitations and other regulations, often insufficient to solve the problem. In February 2020, this area was the first in Europe to be severely hit by the SARS-CoV-2 virus causing the COVID-19 disease, to which the Italian government reacted with the establishment of a drastic lockdown. This situation created the condition to study how significant is the impact of car traffic and industrial activity on the pollution in the area, as these factors were strongly reduced during the lockdown. Differently from some areas in the world, a drastic decrease in pollution measured in terms of particulate matter (PM) was not observed in the Po Valley during the lockdown, suggesting that several external factors can play a role in determining the severity of pollution. In this study, we report the case study of the city of Pavia, where data coming from 23 air quality sensors were analyzed to compare the levels measured during the lockdown with the ones coming from the same period in 2019. Our results show that, on a global scale, there was a statistically significant reduction in terms of PM levels taking into account meteorological variables that can influence pollution such as wind, temperature, humidity, rain and solar radiation. Differences can be noticed analyzing daily pollution trends too, as-compared to the study period in 2019-during the study period in 2020 pollution was higher in the morning and lower in the remaining hours.


Asunto(s)
COVID-19/prevención & control , Ciudades/estadística & datos numéricos , Material Particulado/análisis , Cuarentena , COVID-19/epidemiología , Ciudades/epidemiología , Minería de Datos , Humanos , Italia/epidemiología , Cuarentena/estadística & datos numéricos , Contaminación por Tráfico Vehicular/estadística & datos numéricos , Tiempo (Meteorología)
10.
Artículo en Inglés | MEDLINE | ID: mdl-35328999

RESUMEN

Despite impressive progress, nearly two billion people worldwide have no access to essential medicines. The COVID-19 pandemic revealed Africa's vulnerability due to its reliance on imports for most vaccines, medicines, and other health product needs. The vaccine manufacturing is complex and requires massive financial investments, with global, regional, and national regulatory structures introducing consistent and urgent reforms to assure the quality and safety of medicines. In 2020, there were approximately 600 pharmaceutical manufacturers in Africa, 80% of which were concentrated in eight countries: Egypt, Algeria, Morocco, Tunisia, Nigeria, Ghana, Kenya, and South Africa. Only 4 countries had more than 50 manufacturers, while 22 countries had no local production. Out of the 600, around 25% were multinational companies. Africa is equally affected by modest scaled capacities substantially engaging in packaging and labelling, and occasionally fill and finish steps, facing criticalities in terms of solvent domestic markets. This article discusses the challenges in the development of a local pharmaceutical manufacturing in Africa and reflects on the importance of the momentum for strengthening the local medical production capacity in the continent as a critical opportunity for advancing universal health coverage (UHC).


Asunto(s)
COVID-19 , Medicamentos Esenciales , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Nigeria , Pandemias , Cobertura Universal del Seguro de Salud
11.
Artículo en Inglés | MEDLINE | ID: mdl-36824222

RESUMEN

Alzheimer's disease (AD) is one of the most common and severe forms of Senile Dementia. Genome-wide association studies (GWAS) have identified dozens of AD susceptible loci. To better understand potential mechanism-of-action for AD, quantitative brain imaging features have been studied as mediators linking genetic variants to AD outcomes. In this study, Mediation analysis, Chow test and Mixed-effects Models are used to investigate the biological pathways by which genetic variants affect both brain structures/functions and disease diagnosis. We analyzed the imaging and genetics data collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project, including a Polygenic Hazard Score (PHS) and 13 imaging quantitative traits (QTs) extracted from the AV45 PET scans quantifying the amyloid deposition in different brain regions of subjects from four separate diagnostic groups. Mediation analysis assessed the mediating effects of image QTs between PHS and diagnosis, whereas Chow test and Linear Mixed-Effects models were used to characterize intra-group differences in the associations between genetic scores and imaging QTs for different disease stages. Results show that promising stage-specific imaging QTs that mediate the genetic effect of the studied PHS on disease status have been identified, providing novel insights into the predictive power of the PHS and the mediating power of amyloid imaging QTs with respect to multiple stages over the AD progression.

12.
Front Pharmacol ; 12: 622554, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33767626

RESUMEN

SARS-CoV-2 infection stimulates a complex activation of the immune system. Eosinophils belong to the host's defense equipment against respiratory viruses. In the first phase of the infection, eosinophils contribution is probably appropriate and beneficial, as they facilitate the suppression of the viral replication. However, in severe COVID-19 patients, during the second and third phases of the disease, eosinophils may participate in a maladaptive immune response and directly contribute to immunopathology. In fact, in severe patients, the immune response is prevalently T helper 1 type, but T helper 2 is also present. Eosinophils' expansion and activation are stimulated by Type 2 cytokines, especially IL-5. Moreover, bronchial asthma, in which eosinophils play a central role, seems not to be a major risk factor for severe COVID-19. Among possible explanations, asthmatic patients are often treated with corticosteroids, which have been demonstrated to reduce the progression to critical COVID-19 in hospitalized patients. In addition to steroids, severe asthmatic patients are currently treated with biological drugs that target Type 2 immune response. Because IL-5 is necessary for the growth, survival, and activation of eosinophils, IL-5 inhibitors, such as mepolizumab, decrease the peripheral blood count of eosinophils, but do not influence eosinophils activation in the airway. In severe COVID-19 patients, the blockade of eosinophils' activation might contrast harmful immunity.

13.
J Enzyme Inhib Med Chem ; 35(1): 1685-1696, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32907434

RESUMEN

Heparanase is a validated target in cancer therapy and a potential target for several inflammatory pathologies. A ligand-based virtual screening of commercial libraries was performed to expand the chemical space of small-molecule inhibitors. The screening was based on similarity with known inhibitors and was performed in several runs, starting from literature compounds and progressing through newly discovered inhibitors. Among the fifty-five tested compounds, nineteen had IC50 values lower than 5 µM and some showed remarkable potencies. Importantly, tere- and isophthalamides derivatives belong to new structural classes of heparanase inhibitors and some of them showed enzyme affinities (61 and 63, IC50 = 0.32 and 0.12 µM, respectively) similar to those of the most potent small-molecule inhibitors reported so far. Docking studies provided a comprehensive binding hypothesis shared by compounds with significant structural diversity. The most potent inhibitors reduced cell invasiveness and inhibited the expression of proangiogenic factors in tumour cell lines.


Asunto(s)
Amidas/farmacología , Inhibidores Enzimáticos/farmacología , Glucuronidasa/antagonistas & inhibidores , Amidas/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Glucuronidasa/metabolismo , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
14.
Sensors (Basel) ; 20(7)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276488

RESUMEN

The global healthcare landscape is continuously changing throughout the world as technology advances, leading to a gradual change in lifestyle. Several diseases such as asthma and cardiovascular conditions are becoming more diffuse, due to a rise in pollution exposure and a more sedentary lifestyle. Healthcare providers deal with increasing new challenges, and thanks to fast-developing big data technologies, they can be faced with systems that provide direct support to citizens. In this context, within the EU-funded Participatory Urban Living for Sustainable Environments (PULSE) project, we are implementing a data analytic platform designed to provide public health decision makers with advanced approaches, to jointly analyze maps and geospatial information with healthcare and air pollution data. In this paper we describe a component of such platforms, which couples deep learning analysis of urban geospatial images with healthcare indexes collected by the 500 Cities project. By applying a pre-learned deep Neural Network architecture, satellite images of New York City are analyzed and latent feature variables are extracted. These features are used to derive clusters, which are correlated with healthcare indicators by means of a multivariate classification model. Thanks to this pipeline, it is possible to show that, in New York City, health care indexes are significantly correlated to the urban landscape. This pipeline can serve as a basis to ease urban planning, since the same interventions can be organized on similar areas, even if geographically distant.


Asunto(s)
Aprendizaje Profundo , Salud Urbana , Contaminación del Aire/análisis , Ciudades , Análisis por Conglomerados , Bases de Datos Factuales , Atención a la Salud , Humanos , Imágenes Satelitales
15.
Front Med (Lausanne) ; 6: 84, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31106206

RESUMEN

The percentage of the world's population living in urban areas is projected to increase in the next decades. Big cities are heterogeneous environments in which socioeconomic and environmental differences among the neighborhoods are often very pronounced. Each individual, during his/her life, is constantly subject to a mix of exposures that have an effect on their phenotype but are frequently difficult to identify, especially in an urban environment. Studying how the combination of environmental and socioeconomic factors which the population is exposed to influences pathological outcomes can help transforming public health from a reactive to a predictive system. Thanks to the application of state-of-the-art spatially enabled methods, patients can be stratified according to their characteristics and the geographical context they live in, optimizing healthcare processes and the reducing its costs. Some public health studies focusing specifically on urban areas have been conducted, but they usually consider a coarse spatial subdivision, as a consequence of scarce availability of well-integrated data regarding health and environmental exposure at a sufficient level of granularity to enable meaningful statistical analyses. In this paper, we present an application of highly fine-grained spatial resolution methods to New York City data. We investigated the link between asthma hospitalizations and a combination of air pollution and other environmental and socioeconomic factors. We first performed an explorative analysis using spatial clustering methods that shows that asthma is related to numerous factors whose level of influence varies considerably among neighborhoods. We then performed a Geographically Weighted Regression with different covariates and determined which environmental and socioeconomic factors can predict hospitalizations and how they vary throughout the city. These methods showed to be promising both for visualization and analysis of demographic and epidemiological urban dynamics, that can be used to organize targeted intervention and treatment policies to address the single citizens considering the factors he/she is exposed to. We found a link between asthma and several factors such as PM2.5, age, health insurance coverage, race, poverty, obesity, industrial areas, and recycling. This study has been conducted within the PULSE project, funded by the European Commission, briefly presented in this paper.

16.
Eur J Pharmacol ; 850: 126-134, 2019 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-30753868

RESUMEN

Studies on the role of Rho-associated protein kinase (ROCK) in experimental pulmonary artery hypertension (PAH) relies mainly on the use of pharmacological inhibitors. However, interpreting these data is hampered by the lack of specificity of commonly utilized inhibitors. To fill this gap, we have selected and characterized a novel ROCK inhibitor, Compound 3, previously described in a patent. Inhibitory potency of Compound 3 against enzymatic activity of ROCK-1 and 2 (IC50 = 10 ±â€¯3.1 and 7.8 ±â€¯0.5 nM, respectively) was accompanied by a strong vasodilating effect in phenylephrine pre-contracted isolated rat pulmonary artery rings (IC50 = 51.7 ±â€¯9.1 nM) as well as in aortic rings (IC50 = 45.5 ±â€¯1.1 nM). Compound 3 showed a remarkable selectivity towards ROCK 1 and 2 when tested against a large panel (>400) of human kinases. A partial explanation for its selectivity is provided from docking simulations within ROCK-1. Pharmacokinetic studies showed that Compound 3 is suitable for a twice daily administration without significant accumulation upon repeated dosing. In rats with monocrotaline (MCT)-induced pulmonary hypertension, therapy with Compound 3, (1 and 3 mg/kg, s.c., b.i.d.), started 14 days after induction of the disease, attenuated right ventricle systolic pressure (RVSP) increase. Morphometric histological analysis showed that Compound 3, at both doses, counteracted MCT-induced medial thickening of lung distal arterioles with an effect comparable to macitentan (10 mg/kg, p.o., q.d.). Compound 3 is a potent and highly selective ROCK inhibitor that ameliorates hemodynamic parameters and counteracts pulmonary vascular remodeling in experimental PAH.


Asunto(s)
Hipertensión Pulmonar/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Animales , Aorta/efectos de los fármacos , Aorta/patología , Aorta/fisiopatología , Antagonistas de los Receptores de Endotelina/farmacología , Hemodinámica/efectos de los fármacos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Simulación del Acoplamiento Molecular , Conformación Proteica , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratas , Distribución Tisular , Remodelación Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Quinasas Asociadas a rho/química , Quinasas Asociadas a rho/metabolismo
17.
J Med Chem ; 60(10): 4304-4315, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28489362

RESUMEN

IC87114 [compound 1, (2-((6-amino-9H-purin-9-yl)methyl)-5-methyl-3-(o-tolyl)quinazolin-4(3H)-one)] is a potent PI3K inhibitor selective for the δ isoform. As predicted by molecular modeling calculations, rotation around the bond connecting the quinazolin-4(3H)-one nucleus to the o-tolyl is sterically hampered, which leads to separable conformers with axial chirality (i.e., atropisomers). After verifying that the aS and aR isomers of compound 1 do not interconvert in solution, we investigated how biological activity is influenced by axial chirality and conformational equilibrium. The aS and aR atropisomers of 1 were equally active in the PI3Kδ assay. Conversely, the introduction of a methyl group at the methylene hinge connecting the 6-amino-9H-purin-9-yl pendant to the quinazolin-4(3H)-one nucleus of both aS and aR isomers of 1 had a critical effect on the inhibitory activity, indicating that modulation of the conformational space accessible for the two bonds departing from the central methylene considerably affects the binding of compound 1 analogues to PI3Kδ enzyme.


Asunto(s)
Adenina/análogos & derivados , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/química , Quinazolinas/farmacología , Adenina/química , Adenina/farmacología , Animales , Fosfatidilinositol 3-Quinasa Clase Ia/química , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Humanos , Isomerismo , Ratones , Modelos Moleculares
19.
J Chem Inf Model ; 57(2): 159-169, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28080056

RESUMEN

The duration of drug efficacy in vivo is a key aspect primarily addressed during the lead optimization phase of drug discovery. Hence, the availability of robust computational approaches that can predict the residence time of a compound at its target would accelerate candidate selection. Nowadays the theoretical prediction of this parameter is still very challenging. Starting from methods reported in the literature, we set up and validated a new metadynamics (META-D)-based protocol that was used to rank the experimental residence times of 10 arylpyrazole cyclin-dependent kinase 8 (CDK8) inhibitors for which target-bound X-ray structures are available. The application of reported methods based on the detection of the escape from the first free energy well gave a poor correlation with the experimental values. Our protocol evaluates the energetics of the whole unbinding process, accounting for multiple intermediates and transition states. Using seven collective variables (CVs) encoding both roto-translational and conformational motions of the ligand, a history-dependent biasing potential is deposited as a sum of constant-height Gaussian functions until the ligand reaches an unbound state. The time required to achieve this state is proportional to the integral of the deposited potential over the CV hyperspace. Average values of this time, for replicated META-D simulations, provided an accurate classification of CDK8 inhibitors spanning short, medium, and long residence times.


Asunto(s)
Quinasa 8 Dependiente de Ciclina/antagonistas & inhibidores , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/farmacología , Quinasa 8 Dependiente de Ciclina/química , Conformación Proteica , Inhibidores de Proteínas Quinasas/farmacocinética , Termodinámica , Factores de Tiempo
20.
J Med Chem ; 60(2): 787-796, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28005388

RESUMEN

Metadynamics (META-D) is emerging as a powerful method for the computation of the multidimensional free-energy surface (FES) describing the protein-ligand binding process. Herein, the FES of unbinding of the antagonist N-(3α-hydroxy-5ß-cholan-24-oyl)-l-ß-homotryptophan (UniPR129) from its EphA2 receptor was reconstructed by META-D simulations. The characterization of the free-energy minima identified on this FES proposes a binding mode fully consistent with previously reported and new structure-activity relationship data. To validate this binding mode, new N-(3α-hydroxy-5ß-cholan-24-oyl)-l-ß-homotryptophan derivatives were designed, synthesized, and tested for their ability to displace ephrin-A1 from the EphA2 receptor. Among them, two antagonists, namely compounds 21 and 22, displayed high affinity versus the EphA2 receptor and resulted endowed with better physicochemical and pharmacokinetic properties than the parent compound. These findings highlight the importance of free-energy calculations in drug design, confirming that META-D simulations can be used to successfully design novel bioactive compounds.


Asunto(s)
Simulación por Computador , Diseño de Fármacos , Ácido Litocólico/análogos & derivados , Receptor EphA2/antagonistas & inhibidores , Triptófano/análogos & derivados , Animales , Estabilidad de Medicamentos , Ligandos , Ácido Litocólico/administración & dosificación , Ácido Litocólico/síntesis química , Ácido Litocólico/química , Ácido Litocólico/farmacocinética , Masculino , Ratones , Microsomas Hepáticos/metabolismo , Modelos Químicos , Simulación del Acoplamiento Molecular , Unión Proteica , Receptor EphA2/química , Relación Estructura-Actividad , Triptófano/administración & dosificación , Triptófano/síntesis química , Triptófano/química , Triptófano/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...