Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 13657, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34211017

RESUMEN

Cryo-electron microscopy (cryo-EM) extracts single-particle density projections of individual biomolecules. Although cryo-EM is widely used for 3D reconstruction, due to its single-particle nature it has the potential to provide information about a biomolecule's conformational variability and underlying free-energy landscape. However, treating cryo-EM as a single-molecule technique is challenging because of the low signal-to-noise ratio (SNR) in individual particles. In this work, we propose the cryo-BIFE method (cryo-EM Bayesian Inference of Free-Energy profiles), which uses a path collective variable to extract free-energy profiles and their uncertainties from cryo-EM images. We test the framework on several synthetic systems where the imaging parameters and conditions were controlled. We found that for realistic cryo-EM environments and relevant biomolecular systems, it is possible to recover the underlying free energy, with the pose accuracy and SNR as crucial determinants. We then use the method to study the conformational transitions of a calcium-activated channel with real cryo-EM particles. Interestingly, we recover not only the most probable conformation (used to generate a high-resolution reconstruction of the calcium-bound state) but also a metastable state that corresponds to the calcium-unbound conformation. As expected for turnover transitions within the same sample, the activation barriers are on the order of [Formula: see text]. We expect our tool for extracting free-energy profiles from cryo-EM images to enable more complete characterization of the thermodynamic ensemble of biomolecules.

2.
PLoS Comput Biol ; 16(8): e1007898, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32797038

RESUMEN

New treatments for diseases caused by antimicrobial-resistant microorganisms can be developed by identifying unexplored therapeutic targets and by designing efficient drug screening protocols. In this study, we have screened a library of compounds to find ligands for the flavin-adenine dinucleotide synthase (FADS) -a potential target for drug design against tuberculosis and pneumonia- by implementing a new and efficient virtual screening protocol. The protocol has been developed for the in silico search of ligands of unexplored therapeutic targets, for which limited information about ligands or ligand-receptor structures is available. It implements an integrative funnel-like strategy with filtering layers that increase in computational accuracy. The protocol starts with a pharmacophore-based virtual screening strategy that uses ligand-free receptor conformations from molecular dynamics (MD) simulations. Then, it performs a molecular docking stage using several docking programs and an exponential consensus ranking strategy. The last filter, samples the conformations of compounds bound to the target using MD simulations. The MD conformations are scored using several traditional scoring functions in combination with a newly-proposed score that takes into account the fluctuations of the molecule with a Morse-based potential. The protocol was optimized and validated using a compound library with known ligands of the Corynebacterium ammoniagenes FADS. Then, it was used to find new FADS ligands from a compound library of 14,000 molecules. A small set of 17 in silico filtered molecules were tested experimentally. We identified five inhibitors of the activity of the flavin adenylyl transferase module of the FADS, and some of them were able to inhibit growth of three bacterial species: C. ammoniagenes, Mycobacterium tuberculosis, and Streptococcus pneumoniae, where the last two are human pathogens. Overall, the results show that the integrative VS protocol is a cost-effective solution for the discovery of ligands of unexplored therapeutic targets.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Nucleotidiltransferasas , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Corynebacterium/efectos de los fármacos , Corynebacterium/enzimología , Diseño de Fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Ligandos , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo
3.
J Comput Aided Mol Des ; 34(10): 1063-1077, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32656619

RESUMEN

Computer-aided strategies are useful for reducing the costs and increasing the success-rate in drug discovery. Among these strategies, methods based on pharmacophores (an ensemble of electronic and steric features representing the target active site) are efficient to implement over large compound libraries. However, traditional pharmacophore-based methods require knowledge of active compounds or ligand-receptor structures, and only few ones account for target flexibility. Here, we developed a pharmacophore-based virtual screening protocol, Flexi-pharma, that overcomes these limitations. The protocol uses molecular dynamics (MD) simulations to explore receptor flexibility, and performs a pharmacophore-based virtual screening over a set of MD conformations without requiring prior knowledge about known ligands or ligand-receptor structures for building the pharmacophores. The results from the different receptor conformations are combined using a "voting" approach, where a vote is given to each molecule that matches at least one pharmacophore from each MD conformation. Contrarily to other approaches that reduce the pharmacophore ensemble to some representative models and score according to the matching models or molecule conformers, the Flexi-pharma approach takes directly into account the receptor flexibility by scoring in regards to the receptor conformations. We tested the method over twenty systems, finding an enrichment of the dataset for 19 of them. Flexi-pharma is computationally efficient allowing for the screening of thousands of compounds in minutes on a single CPU core. Moreover, the ranking of molecules by vote is a general strategy that can be applied with any pharmacophore-filtering program.


Asunto(s)
Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Humanos , Ligandos , Modelos Moleculares , Preparaciones Farmacéuticas/metabolismo , Unión Proteica
4.
Sci Rep ; 9(1): 5142, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30914702

RESUMEN

Consensus-scoring methods are commonly used with molecular docking in virtual screening campaigns to filter potential ligands for a protein target. Traditional consensus methods combine results from different docking programs by averaging the score or rank of each molecule obtained from individual programs. Unfortunately, these methods fail if one of the docking programs has poor performance, which is likely to occur due to training-set dependencies and scoring-function parameterization. In this work, we introduce a novel consensus method that overcomes these limitations. We combine the results from individual docking programs using a sum of exponential distributions as a function of the molecule rank for each program. We test the method over several benchmark systems using individual and ensembles of target structures from diverse protein families with challenging decoy/ligand datasets. The results demonstrate that the novel method outperforms the best traditional consensus strategies over a wide range of systems. Moreover, because the novel method is based on the rank rather than the score, it is independent of the score units, scales and offsets, which can hinder the combination of results from different structures or programs. Our method is simple and robust, providing a theoretical basis not only for molecular docking but also for any consensus strategy in general.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA