Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fluoresc ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951307

RESUMEN

Designed and synthesized linear pyrazine-based D-π-A-π-A probe is investigated to study the colorimetric and emission properties with different polarity index solvents. Their molar extinction coefficients were estimated for each solvent. This TLP probe was investigated in THF/water binary solution aggregates, and a redshifted AIE was observed reaching a water fraction of 70%. Also, this TLP probe was applied to the multifunctional, rapid, sensitive and selective detection of acid-base (TFA/TEA) and hydrazine (N2H4) in colorimetric and fluorimetric sensors. The pyrazine unit probe demonstrated an acidochromic effect and explored the acid-sensing behavior. The TLP probe containing malononitrile functional groups has extensively detected hazardous hydrazine species due to nucleophilic attack of hydrazine at the α-position of dicyano. This TLP probe allowed the quick and fast-sensitive detection of hydrazine hydride with a low detection limit of 1.08 nM. According to the results, the mechanism was confirmed by UV-Vis, PL, NMR and MS spectra for the detection of hydrazine, and further evidence of the protonation-deprotonation process in added TFA/TEA was made by titration studies by 1H NMR. Therefore, this work can be used for test strip kits for multifunction applications.

2.
J Fluoresc ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935307

RESUMEN

A newly synthesized naphthalimide-based fluorophore probe NIA was used to detect hydrazine. This probe, based on the Gabriel mechanism exhibited a highly sensitive revealing of hydrazine in naked eyes colorimetric as well as fluorescent recognition against other amines in an aqueous solution in DMSO - HEPES buffer. When hydrazine hydrate was added to the probe NIA, the absorption was red shifted from 403 nm to 520 nm. The titration studies by adding hydrazine to show two apparent isosbestic points found at 358 and 450 nm, respectively. Further, investigation of emission spectra upon addition of hydrazine hydride the emission peak at 493 nm gradually decreased up to 2.4 equiv. and when increasing the hydrazine hydride concentration from 2.4 equiv. to 4.4 equiv., the fluorescence intensity increased at 530 nm. which is exhibiting a raised ratiometric emission intensity at 530 nm. Further investigation of the selectivity of probe NIA revealed colorimetric and fluorimetric responses to interferences with other test amines. 1H NMR and HR-mass proved the Gabriel mechanism bath for detecting hazardous hydrazine by probe NIA. This probe NIA allowed the rapid and ultrasensitive detection of hydrazine hydride with a low detection limit of 0.26 nM. In view of the outstanding properties, probe NIA has been effectively performed to detect hydrazine using various techniques, including a test kit, silica support, and actual environmental water samples.

3.
J Fluoresc ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761323

RESUMEN

This work established a newly designed and synthesized carbazole N-phenyl π-conjugated vinyl malononitrile (CPM) fluorescent sensor, which showed typical and remarkable redshift emission properties with different polarity index solvents. Investigative probe CPM is colorimetric and fluorimetric ultrafast and ultrasensitive detection of hazardous hydrazine in an aqueous medium. Furthermore, CPM showed colorimetric and fluorometric responses to interference tests with other amines and high selectivity for detecting hydrazine without interference with other amines in colorimetric and fluorimetric methods. This probe CPM for hydrazine was as low as the lower detection limit value of 2.21 × 10- 8 M. The probe CPM expects significant attention due to its simplicity and cost-effectiveness in detecting hazardous hydrazine. UV-vis, PL, NMR, and MS spectra confirmed the mechanism of probe CPM detection of hazardous hydrazine. However, making a piece test kit attractive for practical hydrazine vapor leak-detection applications is easy. This study can be applied to many pipeline gas transmission industries and transportation facility sectors.

4.
J Fluoresc ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722499

RESUMEN

A novel colorimetric and fluorogenic probe L based on hydrazine carbothioamide and 1,8-naphthalimide moieties has been designed and synthesized for the hypersensitive detection of Hg2+ or Ag+ ions. The observed probe L showed colorimetric and fluorometric responses for these studies when Hg2+ or Ag+ was added to the DMSO - HEPES buffer solution (pH = 7). An interference test with other metal ions was determined, and the high selectivity of Hg2+ and Ag+ did not interfere with other metal ions in colorimetric and fluorogenic methods. The possible mechanism of binding of these metal ions and the probe L 1:1 complex was determined by H1 NMR. Additionally, the reversibility of the affinity of probe L with mercury (Hg2+) and silver (Ag+) ions was investigated by adding Na2EDTA. The naked eye detected the "Off-On" type fluorescence sensor in the presence of Hg2+ and EDTA. The tested test strip kits provided a strong probability of probe L with high response and rapid, sensitive detection with Hg2+ ion, which may be suitable for practical use.

5.
Anal Methods ; 16(18): 2869-2877, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38639075

RESUMEN

A nucleophilic addition based chemodosimeter was designed and synthesized with a carbazole donor and an indole acceptor. The addition of a cyanide ion to an electron-deficient indole moiety disrupts the acceptor-donor relationship, resulting in noticeable color shifts and spectrum differences in both the absorption and emission profiles. The design has a D-π-A molecular arrangement. Selectivity was investigated in 90% aqueous DMSO solution of probe CI with various anions such as SCN-, PF6-, NO3-, N3-, I-, HSO4-, CN-, H2PO4-, F-, HS-, ClO4-, Cl-, Br-, and AcO-. An intermolecular charge transfer (ICT) band at 506 nm in the UV-visible spectra vanished and the intensity of emission was quenched at 624 nm upon the addition of CN- ions. These outcomes demonstrate the effective nucleophilic addition of cyanide ions to the electron-deficient indole moiety of the probe, resulting in the formation of a new adduct in which the ICT transition is interrupted when π conjugation is blocked. The Job plot, 1H NMR spectroscopy, and HRMS analysis confirmed the formation of a new product. An outstanding response was shown by paper test strips made using probe molecules for the easy detection of cyanide ions in aqueous solutions. Besides, the probe selectively senses cyanide ions in different water samples.

6.
J Fluoresc ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613711

RESUMEN

The sensor with electron donor phenothiazine-2-carbaldehyde and electron acceptor indolium carboxylic acid, is developed with an intramolecular charge transfer transition between them. The synthesized molecule senses cyanide ion in water. The cyanide ion reacts with the molecule via nucleophilic addition in the indolium ring with a noticeable purple to colorless change in the solution observed. Also with the cyanide ion interaction, the sensor exhibits change in UV-visible absorption and fluorescence spectra. While the other ion does not show spectral and visual changes when interacts with the sensor molecule. Also the interference study reveals that the molecule is highly selective towards cyanide ion. Different source of water samples confirms the CN- ion sensing efficiency of the molecule. 1:1 interaction between the molecule PTI and cyanide ion is confirmed from the results of Jobs plot, 1H NMR and HRMS. Paper strips were prepared and this can act as a simple tool to sense cyanide ion in various water samples.

7.
J Fluoresc ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466538

RESUMEN

A benzoxazole-coumarin-based probe BOC, was synthesized and validated for its anion sensing ability and found to be effective in recognizing cyanide ions. Upon addition of cyanide, a spontaneous color change was observed that was visible to the naked eye. The sensitization process takes place with nucleophilic addition, and the cyanide ion added to the probe disrupts the intra molecular charge transfer transition (ICT) between the donor and acceptor units, causing the pink colored probe to become yellow. Ultraviolet and fluorescence methods were applied to measure the detection limits of probes with added cyanide ions, which were found to be 3.47 µM and 2.48 nM. The stoichiometry of the probe with the cyanide ion was determined by the Job's method, NMR titration, and mass spectrometry and was found to be in a 1:1 ratio. The results obtained from the visual and UV-visible spectral studies are justified by theoretical calculations. The cyanide-loaded probe induced visual changes, which enabled the development of a test strip for field application, and the prepared strip can be used to detect the ppm level of cyanide in water samples. The developed probe, BOC, can be used to detect cyanide ions in various water samples.

8.
J Fluoresc ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441710

RESUMEN

A newly developed diindolium moiety has been synthesized and structurally investigated by employing a number of spectroscopic methods like NMR and HRMS in order to serve as a cyanide sensor DI. The interaction between DI and the CN- ion causes a noticeable color shift from pink to colorless, making it easy to detect CN- ions with the naked eye. Besides, the sensor exhibited fluorescence color change from orange to light blue under UV lamp. Sensor DI has remarkable selectivity and sensitivity in distinguishing between CN- and a wide range of interfering anions. The sensing mechanism of sensor DI towards CN- ion involves the nucleophilic addition process of CN- to the electron deficient indolium moiety. The detection limit of cyanide ion by sensor DI is calculated to be 1.4 × 10- 7 M by UV-visible and 8.2 × 10- 8 M by fluorescence technique which are lower than the limit set by WHO. The application of sensor DI for cyanide ion is utilized by making test kit and by taking different sources of water to test the presence of cyanide ion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...