Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 5(1): 944, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085307

RESUMEN

Very long-chain fatty acids (VLCFA) are critical for human cytomegalovirus replication and accumulate upon infection. Here, we used Epstein-Barr virus (EBV) infection of human B cells to elucidate how herpesviruses target VLCFA metabolism. Gene expression profiling revealed that, despite a general induction of peroxisome-related genes, EBV early infection decreased expression of the peroxisomal VLCFA transporters ABCD1 and ABCD2, thus impairing VLCFA degradation. The mechanism underlying ABCD1 and ABCD2 repression involved RNA interference by the EBV-induced microRNAs miR-9-5p and miR-155, respectively, causing significantly increased VLCFA levels. Treatment with 25-hydroxycholesterol, an antiviral innate immune modulator produced by macrophages, restored ABCD1 expression and reduced VLCFA accumulation in EBV-infected B-lymphocytes, and, upon lytic reactivation, reduced virus production in control but not ABCD1-deficient cells. Finally, also other herpesviruses and coronaviruses target ABCD1 expression. Because viral infection might trigger neuroinflammation in X-linked adrenoleukodystrophy (X-ALD, inherited ABCD1 deficiency), we explored a possible link between EBV infection and cerebral X-ALD. However, neither immunohistochemistry of post-mortem brains nor analysis of EBV seropositivity in 35 X-ALD children supported involvement of EBV in the onset of neuroinflammation. Collectively, our findings indicate a previously unrecognized, pivotal role of ABCD1 in viral infection and host defence, prompting consideration of other viral triggers in cerebral X-ALD.


Asunto(s)
Adrenoleucodistrofia , Infecciones por Virus de Epstein-Barr , Herpesviridae , Adrenoleucodistrofia/genética , Antivirales , Niño , Infecciones por Virus de Epstein-Barr/genética , Ácidos Grasos , Herpesviridae/genética , Herpesvirus Humano 4/genética , Humanos
2.
Oecologia ; 183(2): 493-503, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27838778

RESUMEN

Myrmecochory (the dispersal of seeds by ants) is a significant ecological process in sclerophyll woodlands, but habitat disturbance is known to alter the extent and success of this mutualism. We investigated the influence of soil disturbance on the composition of the seed-dispersing ant community. Surveys were conducted in roadside verges where soils are regularly disturbed by road maintenance activities. Using a 'cafeteria' bait station approach, we selected 24 roads of different widths to investigate ant composition and abundance in relation to soil disturbance. We found ant species richness was greater in non-disturbed than disturbed zones, where road verge width significantly influenced results. The composition and abundance of individual seed-dispersing ant species varied between disturbed and non-disturbed zones. Rhytidoponera metallica were more abundant in non-disturbed sites, whereas Melophorus bruneus and Monomorium rothseini were more frequently recorded in disturbed areas. Commonly found Iridomyrmex purpureus was significantly more abundant in disturbed zones in narrow roadsides and vice versa in wide roadsides, and strongly influenced total community composition. Variation in the abundance of commonly recorded Iridomyrmex and Monomorium genera were related more to site conditions (roadside width and habitat) than soil disturbance. The rich composition of seed dispersing ants in roadside environments, and the effects of soil disturbances on these ant communities that we describe, provide a key insight to important seed dispersal vectors occurring in fragmented rural landscapes.


Asunto(s)
Hormigas , Suelo , Animales , Ecosistema , Ambiente , Semillas
3.
Cell Rep ; 5(6): 1749-62, 2013 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-24360960

RESUMEN

Transport of RNAs to dendrites occurs in neuronal RNA granules, which allows local synthesis of specific proteins at active synapses on demand, thereby contributing to learning and memory. To gain insight into the machinery controlling dendritic mRNA localization and translation, we established a stringent protocol to biochemically purify RNA granules from rat brain. Here, we identified a specific set of interactors for two RNA-binding proteins that are known components of neuronal RNA granules, Barentsz and Staufen2. First, neuronal RNA granules are much more heterogeneous than previously anticipated, sharing only a third of the identified proteins. Second, dendritically localized mRNAs, e.g., Arc and CaMKIIα, associate selectively with distinct RNA granules. Third, our work identifies a series of factors with known roles in RNA localization, translational control, and RNA quality control that are likely to keep localized transcripts in a translationally repressed state, often in distinct types of RNPs.


Asunto(s)
Dendritas/metabolismo , Biosíntesis de Proteínas , Transporte de ARN , ARN Mensajero/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Proteínas de Unión al ARN/metabolismo , Ratas , Ribonucleoproteínas/metabolismo
4.
Eukaryot Cell ; 9(3): 379-86, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20081062

RESUMEN

Spliceosomal small nuclear ribonucleoproteins (snRNPs) in trypanosomes contain either the canonical heptameric Sm ring or variant Sm cores with snRNA-specific Sm subunits. Here we show biochemically by a combination of RNase H cleavage and tandem affinity purification that the U4 snRNP contains a variant Sm heteroheptamer core in which only SmD3 is replaced by SSm4. This U4-specific, nuclear-localized Sm core protein is essential for growth and splicing. As shown by RNA interference (RNAi) knockdown, SSm4 is specifically required for the integrity of the U4 snRNA and the U4/U6 di-snRNP in trypanosomes. In addition, we demonstrate by in vitro reconstitution of Sm cores that under stringent conditions, the SSm4 protein suffices to specify the assembly of U4 Sm cores. Together, these data indicate that the assembly of the U4-specific Sm core provides an essential step in U4/U6 di-snRNP biogenesis and splicing in trypanosomes.


Asunto(s)
Multimerización de Proteína/fisiología , Empalme del ARN , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/biosíntesis , Trypanosoma brucei brucei/metabolismo , Proteínas Nucleares snRNP/metabolismo , Proliferación Celular , Centrifugación por Gradiente de Densidad , Expresión Génica/genética , Espacio Intranuclear/metabolismo , Espectrometría de Masas , Unión Proteica/genética , Interferencia de ARN , ARN Bicatenario/genética , ARN Nuclear Pequeño/genética , Ribonucleasa H/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Trypanosoma brucei brucei/genética , Proteínas Nucleares snRNP/genética
5.
Genes Dev ; 23(14): 1650-64, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19605687

RESUMEN

Spliceosomal small nuclear ribonucleoproteins (snRNPs) in trypanosomes contain either the canonical heptameric Sm ring (U1, U5, spliced leader snRNPs), or variant Sm cores with snRNA-specific Sm subunits (U2, U4 snRNPs). Searching for specificity factors, we identified SMN and Gemin2 proteins that are highly divergent from known orthologs. SMN is splicing-essential in trypanosomes and nuclear-localized, suggesting that Sm core assembly in trypanosomes is nuclear. We demonstrate in vitro that SMN is sufficient to confer specificity of canonical Sm core assembly and to discriminate against binding to nonspecific RNA and to U2 and U4 snRNAs. SMN interacts transiently with the SmD3B subcomplex, contacting specifically SmB. SMN remains associated throughout the assembly of the Sm heteroheptamer and dissociates only when a functional Sm site is incorporated. These data establish a novel role of SMN, mediating snRNP specificity in Sm core assembly, and yield new biochemical insight into the mechanism of SMN activity.


Asunto(s)
Proteínas del Complejo SMN/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteínas Nucleares snRNP/metabolismo , Secuencia de Aminoácidos , Animales , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN/química , Alineación de Secuencia , Empalmosomas/metabolismo , Proteínas Nucleares snRNP/química
6.
Eukaryot Cell ; 8(8): 1228-34, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19542313

RESUMEN

The processing of polycistronic pre-mRNAs in trypanosomes requires the spliceosomal small ribonucleoprotein complexes (snRNPs) U1, U2, U4/U6, U5, and SL, each of which contains a core of seven Sm proteins. Recently we reported the first evidence for a core variation in spliceosomal snRNPs; specifically, in the trypanosome U2 snRNP, two of the canonical Sm proteins, SmB and SmD3, are replaced by two U2-specific Sm proteins, Sm15K and Sm16.5K. Here we identify the U2-specific, nuclear-localized U2B'' protein from Trypanosoma brucei. U2B'' interacts with a second U2 snRNP protein, U2-40K (U2A'), which in turn contacts the U2-specific Sm16.5K/15K subcomplex. Together they form a high-affinity, U2-specific binding complex. This trypanosome-specific assembly differs from the mammalian system and provides a functional role for the Sm core variation found in the trypanosomal U2 snRNP.


Asunto(s)
Proteínas Protozoarias/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteínas Nucleares snRNP/metabolismo , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , ARN Nuclear Pequeño/genética , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/genética , Alineación de Secuencia , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Proteínas Nucleares snRNP/química , Proteínas Nucleares snRNP/genética
7.
EMBO J ; 25(19): 4513-23, 2006 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-16977313

RESUMEN

Messenger RNA processing in trypanosomes by cis and trans splicing requires spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/U6, and U5, as well as the spliced leader (SL) RNP. As in other eukaryotes, these RNPs share a core structure of seven Sm polypeptides. Here, we report that the identity of the Sm protein constituents varies between spliceosomal snRNPs: specifically, two of the canonical Sm proteins, SmB and SmD3, are replaced in the U2 snRNP by two novel, U2 snRNP-specific Sm proteins, Sm15K and Sm16.5K. We present a model for the variant Sm core in the U2 snRNP, based on tandem affinity purification-tagging and in vitro protein-protein interaction assays. Using in vitro reconstitutions with canonical and U2-specific Sm cores, we show that the exchange of two Sm subunits determines discrimination between individual Sm sites. In sum, we have demonstrated that the heteroheptameric Sm core structure varies between spliceosomal snRNPs, and that modulation of the Sm core composition mediates the recognition of small nuclear RNA-specific Sm sites.


Asunto(s)
Autoantígenos/metabolismo , Proteínas Protozoarias/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Empalmosomas/metabolismo , Trypanosoma brucei brucei/metabolismo , Secuencia de Aminoácidos , Animales , Autoantígenos/química , Secuencia de Bases , Sitios de Unión , Modelos Biológicos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Proteínas Protozoarias/química , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/genética , Ribonucleoproteínas Nucleares Pequeñas/química , Alineación de Secuencia , Especificidad por Sustrato , Proteínas Nucleares snRNP
8.
Nucleic Acids Res ; 33(8): 2493-503, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15863726

RESUMEN

Processing of primary transcripts in trypanosomes requires trans splicing and polyadenylation, and at least for the poly(A) polymerase gene, also internal cis splicing. The trypanosome U1 snRNA, which is most likely a cis-splicing specific component, is unusually short and has a relatively simple secondary structure. Here, we report the identification of three specific protein components of the Trypanosoma brucei U1 snRNP, based on mass spectrometry and confirmed by in vivo epitope tagging and in vitro RNA binding. Both T.brucei U1-70K and U1C are only distantly related to known counterparts from other eukaryotes. The T.brucei U1-70K protein represents a minimal version of 70K, recognizing the first loop sequence of U1 snRNA with the same specificity as the mammalian protein. The trypanosome U1C-like protein interacts with 70K directly and binds the 5' terminal sequence of U1 snRNA. Surprisingly, instead of U1A we have identified a novel U1 snRNP-specific protein, TbU1-24K. U1-24K lacks a known RNA-binding motif and integrates in the U1 snRNP via interaction with U1-70K. These data result in a model of the trypanosome U1 snRNP, which deviates substantially from our classical view of the U1 particle and may reflect the special requirements for splicing of a small set of cis-introns in trypanosomes.


Asunto(s)
Proteínas Protozoarias/química , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Trypanosoma brucei brucei/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Análisis Mutacional de ADN , Espectrometría de Masas , Modelos Genéticos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN Protozoario/química , ARN Protozoario/metabolismo , ARN Nuclear Pequeño/química , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo
9.
Methods ; 26(2): 162-9, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12054893

RESUMEN

Oligonucleotide-targeted RNase H protection assays are powerful means to analyze protein binding domains in ribonucleoprotein particles (RNPs). In such an assay, the RNA component of a RNP and, in an essential control reaction, the corresponding deproteinized RNA are targeted with an antisense DNA oligonucleotide and RNase H. If the oligonucleotide is able to anneal to the complementary sequence of the RNA, RNase H will cleave the RNA within the double-stranded DNA/RNA region. However, protein binding to a specific RNA sequence may prevent hybridization of the DNA oligonucleotide, thereby protecting the RNA molecule from endonucleolytic cleavage. An RNase H protection analysis can usually be carried out with crude cell extract and does not require further RNP purification. On the other hand, purified RNP fractions are preferable when a crude extract contains RNase activity or a heterogenous RNP population of a specific RNA. The cleavage pattern of RNase H digestion can be analyzed by Northern blotting or primer-extension assays. In addition, the investigation of RNP fragments, for example, by native gel electrophoresis, may reveal important structural information about a RNP. In this article, we describe procedures for RNP and RNA preparation, the oligonucleotide-targeted RNase H protection assay, and methods for the analysis of RNA and RNP cleavage products. As an example, we show oligonucleotide-targeted RNase H protection of the Trypanosoma brucei U1 small nuclear RNP.


Asunto(s)
Proteínas de Unión al ARN/química , ARN/química , Ribonucleasa H/metabolismo , Biotinilación , Cromatografía , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Etanol/farmacología , Modelos Genéticos , Oligonucleótidos/química , Oligonucleótidos Antisentido/farmacología , Unión Proteica , Ribonucleoproteínas Nucleares Pequeñas/metabolismo
10.
Mol Biochem Parasitol ; 121(2): 233-43, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12034457

RESUMEN

Recent studies in the trypanosome system have revealed that in addition to trans splicing of a short spliced leader (SL) exon, there is also cis splicing of internal introns. It has been suggested that cis splicing requires base-pairing of U1 small nuclear RNA (snRNA) and the 5' splice site. We have cloned the gene for U1 snRNA from Trypanosoma brucei and characterized the U1 snRNP. Based on immunoprecipitation and direct mass-spectrometric protein analysis the U1 snRNP contains the common Sm core found also in the known trans-spliceosomal snRNPs U2, U4/U6, and U5. The 5' end of U1 snRNA in the U1 snRNP is accessible for and functional in specific recognition of the 5' splice site of the poly(A) polymerase intron.


Asunto(s)
ARN Nuclear Pequeño , Ribonucleoproteína Nuclear Pequeña U1 , Empalmosomas/metabolismo , Trypanosoma brucei brucei/metabolismo , Animales , Secuencia de Bases , Clonación Molecular , Datos de Secuencia Molecular , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Sitios de Empalme de ARN/fisiología , ARN Protozoario/metabolismo , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Ribonucleasa H/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Análisis de Secuencia de ADN , Trypanosoma brucei brucei/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...