Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 42(4): 2380-90, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24319145

RESUMEN

Most mitotic homologous recombination (HR) events proceed via a synthesis-dependent strand annealing mechanism to avoid crossing over, which may give rise to chromosomal rearrangements and loss of heterozygosity. The molecular mechanisms controlling HR sub-pathway choice are poorly understood. Here, we show that human RECQ5, a DNA helicase that can disrupt RAD51 nucleoprotein filaments, promotes formation of non-crossover products during DNA double-strand break-induced HR and counteracts the inhibitory effect of RAD51 on RAD52-mediated DNA annealing in vitro and in vivo. Moreover, we demonstrate that RECQ5 deficiency is associated with an increased occupancy of RAD51 at a double-strand break site, and it also causes an elevation of sister chromatid exchanges on inactivation of the Holliday junction dissolution pathway or on induction of a high load of DNA damage in the cell. Collectively, our findings suggest that RECQ5 acts during the post-synaptic phase of synthesis-dependent strand annealing to prevent formation of aberrant RAD51 filaments on the extended invading strand, thus limiting its channeling into potentially hazardous crossover pathway of HR.


Asunto(s)
Roturas del ADN de Doble Cadena , RecQ Helicasas/metabolismo , Reparación del ADN por Recombinación , Línea Celular , ADN/metabolismo , ADN de Cadena Simple/metabolismo , Humanos , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Intercambio de Cromátides Hermanas
2.
Mol Cell ; 50(3): 333-43, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23623683

RESUMEN

The regulation of DNA double-strand break (DSB) repair by phosphorylation-dependent signaling pathways is crucial for the maintenance of genome stability; however, remarkably little is known about the molecular mechanisms by which phosphorylation controls DSB repair. Here, we show that PIN1, a phosphorylation-specific prolyl isomerase, interacts with key DSB repair factors and affects the relative contributions of homologous recombination (HR) and nonhomologous end-joining (NHEJ) to DSB repair. We find that PIN1-deficient cells display reduced NHEJ due to increased DNA end resection, whereas resection and HR are compromised in PIN1-overexpressing cells. Moreover, we identify CtIP as a substrate of PIN1 and show that DSBs become hyperresected in cells expressing a CtIP mutant refractory to PIN1 recognition. Mechanistically, we provide evidence that PIN1 impinges on CtIP stability by promoting its ubiquitylation and subsequent proteasomal degradation. Collectively, these data uncover PIN1-mediated isomerization as a regulatory mechanism coordinating DSB repair.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN/genética , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas , Inestabilidad Genómica , Células HEK293 , Recombinación Homóloga , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Ubiquitinación
3.
Nat Cell Biol ; 13(11): 1376-82, 2011 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22020440

RESUMEN

Unrepaired DNA double-strand breaks (DSBs) cause genetic instability that leads to malignant transformation or cell death. Cells respond to DSBs with the ordered recruitment of signalling and repair proteins to the site of lesion. Protein modification with ubiquitin is crucial for the signalling cascade, but how ubiquitylation coordinates the dynamic assembly of these complexes is poorly understood. Here, we show that the human ubiquitin-selective protein segregase p97 (also known as VCP; valosin-containing protein) cooperates with the ubiquitin ligase RNF8 to orchestrate assembly of signalling complexes and efficient DSB repair after exposure to ionizing radiation. p97 is recruited to DNA lesions by its ubiquitin adaptor UFD1-NPL4 and Lys-48-linked ubiquitin (K48-Ub) chains, whose formation is regulated by RNF8. p97 subsequently removes K48-Ub conjugates from sites of DNA damage to orchestrate proper association of 53BP1, BRCA1 and RAD51, three factors critical for DNA repair and genome surveillance mechanisms. Impairment of p97 activity decreases the level of DSB repair and cell survival after exposure to ionizing radiation. These findings identify the p97-UFD1-NPL4 complex as an essential factor in ubiquitin-governed DNA-damage response, highlighting its importance in guarding genome stability.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Procesamiento Proteico-Postraduccional , Proteínas Adaptadoras del Transporte Vesicular , Adenosina Trifosfatasas/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Núcleo Celular/efectos de la radiación , Supervivencia Celular , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta en la Radiación , Inestabilidad Genómica , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Transporte de Proteínas , Proteínas/metabolismo , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina-Proteína Ligasas , Ubiquitinación , Proteína que Contiene Valosina
4.
J Biol Chem ; 285(21): 15739-45, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20348101

RESUMEN

Homologous recombination (HR) provides an efficient mechanism for error-free repair of DNA double-strand breaks (DSBs). However, HR can be also harmful as inappropriate or untimely HR events can give rise to lethal recombination intermediates and chromosome rearrangements. A critical step of HR is the formation of a RAD51 filament on single-stranded (ss)DNA, which mediates the invasion of a homologous DNA molecule. In mammalian cells, several DNA helicases have been implicated in the regulation of this process. RECQ5, a member of the RecQ family of DNA helicases, interacts physically with the RAD51 recombinase and disrupts RAD51 presynaptic filaments in a reaction dependent on ATP hydrolysis. Here, we have precisely mapped the RAD51-interacting domain of RECQ5 and generated mutants that fail to interact with RAD51. We show that although these mutants retain normal ATPase activity, they are impaired in their ability to displace RAD51 from ssDNA. Moreover, we show that ablation of RECQ5-RAD51 complex formation by a point mutation alleviates the inhibitory effect of RECQ5 on HR-mediated DSB repair. These findings provide support for the proposal that interaction with RAD51 is critical for the anti-recombinase attribute of RECQ5.


Asunto(s)
Emparejamiento Cromosómico/fisiología , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Recombinasa Rad51/metabolismo , RecQ Helicasas/metabolismo , Recombinación Genética/fisiología , Línea Celular , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Humanos , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Recombinasa Rad51/genética , RecQ Helicasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...