Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38865496

RESUMEN

Cichlid fishes of the genus Oreochromis (tilapia) are among the most important fish for inland capture fisheries and global aquaculture. Deliberate introductions of non-native species for fisheries improvement and accidental escapees from farms have resulted in admixture with indigenous species. Such hybridization may be detrimental to native biodiversity, potentially leading to genomic homogenization of populations and the loss of important genetic material associated with local adaptation. By contrast, introgression may fuel diversification when combined with ecological opportunity, by supplying novel genetic combinations. To date, the role of introgression in the evolutionary history of tilapia has not been explored. Here we studied both ancient and recent hybridization in tilapia, using whole genome resequencing of 575 individuals from 23 species. We focused on Tanzania, a natural hotspot of tilapia diversity, and a country where hybridization between exotic and native species in the natural environment has been previously reported. We reconstruct the first genome-scale phylogeny of the genus and reveal prevalent ancient gene flow across the Oreochromis phylogeny. This has likely resulted in the hybrid speciation of one species, O. chungruruensis. We identify multiple cases of recent hybridization between native and introduced species in the wild, linked to the use of non-native species in both capture fisheries improvement and aquaculture. This has potential implications for both conservation of wild populations and the development of the global tilapia aquaculture industry.


Asunto(s)
Hibridación Genética , Filogenia , Animales , Tanzanía , Flujo Génico , Cíclidos/genética , Tilapia/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38869685

RESUMEN

We report a case of Klebsiella pneumoniae bacteraemia in an 80-year-old man in France with no history of travel to Asia, complicated by endogenous endophthalmitis, multiple cerebral microbleeds and hepatic microabscesses, associated with a Bentall endocarditis. Hypervirulence pathotype was suggested based on clinical picture, bacterial isolate genomic sequence and hypermucoidy. Interestingly, the isolate had the non-K1/K2-capsular serotype locus KL113-like, carried a KpVP-1-like virulence plasmid, and belonged to the emerging sublineage SL660 (comprising the sequence type ST660).

3.
G3 (Bethesda) ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775627

RESUMEN

Bananas (Musa spp.) are an essential fruit worldwide and rank as the fourth most significant food crop for addressing malnutrition due to their rich nutrients and starch content. The potential of their genetic diversity remains untapped due to limited molecular breeding tools. Our study examined a phenotypically diverse group of 124 accessions from the Colombian Musaceae Collection (CMC) conserved in AGROSAVIA. We assessed 12 traits categorized into morphology, fruit quality, and yield, alongside sequence data. Our sequencing efforts provided valuable insights, with an average depth of about 7X per accession, resulting in 187,133 SNPs against Musa acuminata (A genome) and 220,451 against Musa balbisiana (B genome). Population structure analysis grouped samples into four and five clusters based on the reference genome. By using different association models, we identified marker-trait associations (MTAs). The mixed linear model (MLM) revealed four MTAs, while the BLINK and FarmCPU models identified 82 and 70 MTAs, respectively. We identified 38 and 40 candidate genes in linkage proximity to significant MTAs for the A-genome and B-genome, respectively. Our findings provide insights into the genetic underpinnings of morphology, fruit quality, and yield. Once validated, the SNP markers and candidate genes can potentially drive advancements in genomic-guided breeding strategies to enhance banana crop improvement.

4.
Science ; 383(6690): eabn3263, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38422184

RESUMEN

Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.


Asunto(s)
Elementos de Facilitación Genéticos , Euterios , Evolución Molecular , Regulación de la Expresión Génica , Corteza Motora , Neuronas Motoras , Proteínas , Vocalización Animal , Animales , Quirópteros/genética , Quirópteros/fisiología , Vocalización Animal/fisiología , Corteza Motora/citología , Corteza Motora/fisiología , Cromatina/metabolismo , Neuronas Motoras/fisiología , Laringe/fisiología , Epigénesis Genética , Genoma , Proteínas/genética , Proteínas/metabolismo , Secuencia de Aminoácidos , Euterios/genética , Euterios/fisiología , Aprendizaje Automático
5.
J Med Imaging Radiat Sci ; 55(1): 52-60, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38065751

RESUMEN

INTRODUCTION: Journal clubs (JC) have emerged as a popular tool within medical and health professions to deliver outcomes such as promotion of evidence-based practice (EBP), improvement of critical appraisal skills, as well as stimulation of research interest among participating professionals. However, the delivery of these outcomes within the diagnostic radiography profession has not been evidenced and this is the aim of this service evaluation. METHODS: This evaluation adopted a pre- and post-evaluation survey design to explore the impact of a novel JC introduced among diagnostic radiographers in a UK NHS Trust. Impact was assessed based on four pre-determined outcomes such as Knowledge of EBP, Attitude to EBP, Critical Appraisal Skill and Research interest. Open ended questions in the post evaluation survey were also used to obtain participants feedback on JC activities attended. RESULTS: Evaluation of the four pre-determined outcomes indicated that JC activities participated by diagnostic radiographers resulted in positive changes across all evaluated categories. Attitude to EBP was the only outcome to show a statistically significant positive change across all participants, highlighting that the JC affected EBP attitudes positively for those that attended. Furthermore, thematic analysis of open-ended questions indicated that the collaboration experienced among JC members during critical appraisal of articles was a motivation for continued participation while factors such as high clinical workload and absence of management in meetings were identified as mitigating barriers. CONCLUSION: Participation in the JC showed positive improvements in all pre-determined categories. The collaborative nature of JC was motivating for staff, however barriers such as management absence in meetings, and high clinical workload did cause some challenges. Research is recommended to look at the longer-term impact of JC activities amongst diagnostic radiographers.


Asunto(s)
Técnicos Medios en Salud , Medicina Estatal , Humanos , Práctica Clínica Basada en la Evidencia/métodos , Actitud del Personal de Salud , Encuestas y Cuestionarios
6.
Ann Bot ; 133(2): 349-364, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38097270

RESUMEN

BACKGROUND: Bananas and plantains (Musa spp.) are among the most important crops worldwide. The cultivated varieties are vegetatively propagated, so their genetic diversity is essentially fixed over time. Musa acuminata, M. balbisiana and M. schizocarpa have provided the named A, B and S subgenomes that predominantly constitute these varieties. Here we aimed to characterize intergenetic recombination and chromosomal imbalances between these A/B/S subgenomes, which often result in copy-number variants (CNVs) leading to changes in gene dosage and phenotype, in a diverse panel of bananas and plantains. This will allow us to characterize varietal lineages better and identify sources of genetic variation. METHODS: We delimited population structure and clonal lineages in a diverse panel of 188 banana and plantain accessions from the most common cultivars using admixture, principal component and phylogenetic analyses. We used new scalable alignment-based methods, Relative Averaged Alignment (RAA) and Relative Coverage, to infer subgenome composition (AA, AAB, etc.) and interspecific recombination. RESULTS: In our panel, we identified ten varietal lineages composed of somatic clones, plus three groups of tetraploid accessions. We identified chromosomal exchanges resulting in gains/losses in chromosomal segments (CNVs), particularly in AAB and ABB varieties. CONCLUSIONS: We demonstrated alignment-based RAA and Relative Coverage can identify subgenome composition and introgressions with similar results to more complex approaches based on single nucleotide polymorphism (SNP) databases. These ab initio species-agnostic methods can be used without sequencing a panel of wild ancestors to find private SNPs, or in recently diverged pools where private SNPs are uncommon. The extensive A/B/S exchanges and the variation in the length of some introgressions between lineages further support multiple foundational events of hybridization and residual backcrossing. Imbalances between A/B/S may have resulted in CNVs and gene dosage variation. Since most edible banana genomes are fixed on time, these CNVs are stable genetic variations probably associated with phenotypic variation for future genetic studies.


Asunto(s)
Musa , Filogenia , Musa/genética , Genoma de Planta/genética , Diploidia , Recombinación Genética/genética
7.
Sci Rep ; 13(1): 10957, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414963

RESUMEN

Increasing reports on K. pneumoniae strains with antimicrobial resistance and virulence traits from food and farm animals are raising concerns about the potential role of Klebsiella spp. as a foodborne pathogen. This study aimed to report and characterize Klebsiella spp. isolates from two artisanal ready-to-eat food (soft cheese and salami) producing facilities, and to track similar genotypes in different ecological niches. Over 1170 samples were collected during the whole production chain of different food batches. The overall Klebsiella prevalence was 6%. Strains were classified into the three Klebsiella species complexes: K. pneumoniae (KpSC, n = 17), K. oxytoca (KoSC, n = 38) and K. planticola (KplaSC, n = 18). Despite high genetic diversity we found in terms of known and new sequence types (STs), core genome phylogeny revealed clonal strains persisting in the same processing setting for over 14 months, isolated from the environment, raw materials and end-products. Strains showed a natural antimicrobial resistance phenotype-genotype. K. pneumoniae strains showed the highest virulence potential, with sequence types ST4242 and ST107 strains carrying yersiniabactin ybt16 and aerobactin iuc3. The latter was detected in all K. pneumoniae from salami and was located on a large conjugative plasmid highly similar (97% identity) to iuc3+ plasmids from human and pig strains circulating in nearby regions of Italy. While identical genotypes may persist along the whole food production process, different genotypes from distinct sources in the same facility shared an iuc3-plasmid. Surveillance in the food chain will be crucial to obtain a more comprehensive picture of the circulation of Klebsiella strains with pathogenic potential.


Asunto(s)
Infecciones por Klebsiella , Klebsiella , Humanos , Animales , Porcinos , Klebsiella/genética , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae , Plásmidos , Genómica , Klebsiella oxytoca , Antibacterianos/farmacología , beta-Lactamasas/genética , Pruebas de Sensibilidad Microbiana
8.
Genomics ; 115(4): 110633, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37121445

RESUMEN

The Nile tilapia (Oreochromis niloticus) accounts for ∼9% of global freshwater finfish production however, extreme cold weather and decreasing freshwater resources has created the need to develop resilient strains. By determining the genetic bases of aquaculture relevant traits, we can genotype and breed desirable traits into farmed strains. We generated ATAC-seq and gene expression data from O. niloticus gill tissues, and through the integration of SNPs from 27 tilapia species, identified 1168 highly expressed genes (4% of all Nile tilapia genes) with highly accessible promoter regions with functional variation at transcription factor binding sites (TFBSs). Regulatory variation at these TFBSs is likely driving gene expression differences associated with tilapia gill adaptations, and differentially segregate in freshwater and euryhaline tilapia species. The generation of novel integrative data revealed candidate genes e.g., prolactin receptor 1 and claudin-h, genetic relationships, and loci associated with aquaculture relevant traits like salinity and osmotic stress acclimation.


Asunto(s)
Cíclidos , Tilapia , Animales , Tilapia/genética , Tilapia/metabolismo , Cromatina , Branquias/metabolismo , Cíclidos/genética , Acuicultura
9.
J Hered ; 113(5): 500-515, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-35932226

RESUMEN

The European polecat (Mustela putorius) is a mammalian predator which occurs across much of Europe east to the Ural Mountains. In Great Britain, following years of persecution the range of the European polecat contracted and by the early 1900s was restricted to unmanaged forests of central Wales. The European polecat has recently undergone a population increase due to legal protection and its range now overlaps that of feral domestic ferrets (Mustela putorius furo). During this range expansion, European polecats hybridized with feral domestic ferrets producing viable offspring. Here, we carry out population-level whole-genome sequencing on 8 domestic ferrets, 19 British European polecats, and 15 European polecats from the European mainland. We used a range of population genomics methods to examine the data, including phylogenetics, phylogenetic graphs, model-based clustering, phylogenetic invariants, ABBA-BABA tests, topology weighting, and Fst. We found high degrees of genome introgression in British polecats outside their previous stronghold, even in those individuals phenotyped as "pure" polecats. These polecats ranged from presumed F1 hybrids (gamma = 0.53) to individuals that were much less introgressed (gamma = 0.2). We quantify this introgression and find introgressed genes containing Fst outliers associated with cognitive function and sight.


Asunto(s)
Hurones , Humanos , Animales , Hurones/genética , Reino Unido , Filogenia , Europa (Continente) , Fenotipo
10.
Food Microbiol ; 106: 103757, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35690455

RESUMEN

In response to the massive use of biocides for controlling Listeria monocytogenes (hereafter Lm) contaminations along the food chain, strains showing biocide tolerance emerged. Here, accessory genomic elements were associated with biocide tolerance through pangenome-wide associations performed on 197 Lm strains from different lineages, ecological, geographical and temporal origins. Mobile elements, including prophage-related loci, the Tn6188_qacH transposon and pLMST6_emrC plasmid, were widespread across lineage I and II food strains and associated with tolerance to benzalkonium-chloride (BC), a quaternary ammonium compound (QAC) widely used in food processing. The pLMST6_emrC was also associated with tolerance to another QAC, the didecyldimethylammonium-chloride, displaying a pleiotropic effect. While no associations were detected for chemically reactive biocides (alcohols and chlorines), genes encoding for cell-surface proteins were associated with BC or polymeric biguanide tolerance. The latter was restricted to lineage I strains from animal and the environment. In conclusion, different genetic markers, with polygenic nature or not, appear to have driven the Lm adaptation to biocide, especially in food strains but also from animal and the environment. These markers could aid to monitor and predict the spread of biocide tolerant Lm genotypes across different ecological niches, finally reducing the risk of such strains in food industrial settings.


Asunto(s)
Desinfectantes , Listeria monocytogenes , Animales , Compuestos de Benzalconio/farmacología , Cloruros , Desinfectantes/farmacología , Farmacorresistencia Bacteriana/genética , Ecosistema , Genómica
11.
Mol Biol Evol ; 39(7)2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35748824

RESUMEN

The divergence of regulatory regions and gene regulatory network (GRN) rewiring is a key driver of cichlid phenotypic diversity. However, the contribution of miRNA-binding site turnover has yet to be linked to GRN evolution across cichlids. Here, we extend our previous studies by analyzing the selective constraints driving evolution of miRNA and transcription factor (TF)-binding sites of target genes, to infer instances of cichlid GRN rewiring associated with regulatory binding site turnover. Comparative analyses identified increased species-specific networks that are functionally associated to traits of cichlid phenotypic diversity. The evolutionary rewiring is associated with differential models of miRNA- and TF-binding site turnover, driven by a high proportion of fast-evolving polymorphic sites in adaptive trait genes compared with subsets of random genes. Positive selection acting upon discrete mutations in these regulatory regions is likely to be an important mechanism in rewiring GRNs in rapidly radiating cichlids. Regulatory variants of functionally associated miRNA- and TF-binding sites of visual opsin genes differentially segregate according to phylogeny and ecology of Lake Malawi species, identifying both rewired, for example, clade-specific and conserved network motifs of adaptive trait associated GRNs. Our approach revealed several novel candidate regulators, regulatory regions, and three-node motifs across cichlid genomes with previously reported associations to known adaptive evolutionary traits.


Asunto(s)
Cíclidos , MicroARNs , Animales , Sitios de Unión , Cíclidos/genética , Evolución Molecular , Redes Reguladoras de Genes , MicroARNs/genética , Filogenia
12.
Food Chem ; 394: 133461, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35728467

RESUMEN

Flavonoids are considered beneficial, but they may exhibit pro-oxidative effects likely due to metal reducing properties. For the first time, 24 structurally related flavonoids were compared for copper reduction, and modulation of the copper-triggered Fenton reaction and lysis of erythrocytes. The vast majority of flavonoids reduced cupric ions; their behaviour ranged from progressive gradual reduction through bell-shaped, neutral, to a blockade of spontaneous reduction. Similarly, different behaviours were observed with the Fenton reaction. Flavone was the only flavonoid that potentiated copper-triggered haemolysis (155 ± 81 % at twice the amount of Cu2+), while 18 flavonoids were at least partly protective in some concentrations. Only 5-hydroxyflavone did not reduce Cu2+ and behaved as an antioxidant in both assays (reduction of 60 ± 10 % and 88 ± 1%, respectively, at an equimolar ratio with Cu2+). In conclusion, relatively subtle structural differences resulted in very different anti/prooxidant behaviour depending on the model.


Asunto(s)
Cobre , Flavonoides , Antioxidantes/química , Cobre/química , Flavonoides/química , Hemólisis , Humanos , Iones , Oxidación-Reducción
13.
Sci Data ; 9(1): 190, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484273

RESUMEN

Listeria monocytogenes (Lm) is a ubiquitous bacterium that causes listeriosis, a serious foodborne illness. In the nature-to-human transmission route, Lm can prosper in various ecological niches. Soil and decaying organic matter are its primary reservoirs. Certain clonal complexes (CCs) are over-represented in food production and represent a challenge to food safety. To gain new understanding of Lm adaptation mechanisms in food, the genetic background of strains found in animals and environment should be investigated in comparison to that of food strains. Twenty-one partners, including food, environment, veterinary and public health laboratories, constructed a dataset of 1484 genomes originating from Lm strains collected in 19 European countries. This dataset encompasses a large number of CCs occurring worldwide, covers many diverse habitats and is balanced between ecological compartments and geographic regions. The dataset presented here will contribute to improve our understanding of Lm ecology and should aid in the surveillance of Lm. This dataset provides a basis for the discovery of the genetic traits underlying Lm adaptation to different ecological niches.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Listeria monocytogenes , Listeriosis , Animales , Ecosistema , Enfermedades Transmitidas por los Alimentos/microbiología , Listeria monocytogenes/genética , Listeriosis/epidemiología , Listeriosis/microbiología
14.
Evolution ; 76(6): 1301-1319, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35398888

RESUMEN

In adaptive radiations, single lineages rapidly diversify by adapting to many new niches. Little is known yet about the genomic mechanisms involved, that is, the source of genetic variation or genomic architecture facilitating or constraining adaptive radiation. Here, we investigate genomic changes associated with repeated invasion of many different freshwater niches by threespine stickleback in the Haida Gwaii archipelago, Canada, by resequencing single genomes from one marine and 28 freshwater populations. We find 89 likely targets of parallel selection in the genome that are enriched for old standing genetic variation. In contrast to theoretical expectations, their genomic architecture is highly dispersed with little clustering. Candidate genes and genotype-environment correlations match the three major environmental axes predation regime, light environment, and ecosystem size. In a niche space with these three dimensions, we find that the more divergent a new niche from the ancestral marine habitat, the more loci show signatures of parallel selection. Our findings suggest that the genomic architecture of parallel adaptation in adaptive radiation depends on the steepness of ecological gradients and the dimensionality of the niche space.


Asunto(s)
Ecosistema , Smegmamorpha , Adaptación Fisiológica/genética , Animales , Genoma , Genómica , Smegmamorpha/genética
15.
BMC Genomics ; 23(1): 235, 2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35346021

RESUMEN

BACKGROUND: Whole genome sequencing analyzed by core genome multi-locus sequence typing (cgMLST) is widely used in surveillance of the pathogenic bacteria Listeria monocytogenes. Given the heterogeneity of available bioinformatics tools to define cgMLST alleles, our aim was to identify parameters influencing the precision of cgMLST profiles. METHODS: We used three L. monocytogenes reference genomes from different phylogenetic lineages and assessed the impact of in vitro (i.e. tested genomes, successive platings, replicates of DNA extraction and sequencing) and in silico parameters (i.e. targeted depth of coverage, depth of coverage, breadth of coverage, assembly metrics, cgMLST workflows, cgMLST completeness) on cgMLST precision made of 1748 core loci. Six cgMLST workflows were tested, comprising assembly-based (BIGSdb, INNUENDO, GENPAT, SeqSphere and BioNumerics) and assembly-free (i.e. kmer-based MentaLiST) allele callers. Principal component analyses and generalized linear models were used to identify the most impactful parameters on cgMLST precision. RESULTS: The isolate's genetic background, cgMLST workflows, cgMLST completeness, as well as depth and breadth of coverage were the parameters that impacted most on cgMLST precision (i.e. identical alleles against reference circular genomes). All workflows performed well at ≥40X of depth of coverage, with high loci detection (> 99.54% for all, except for BioNumerics with 97.78%) and showed consistent cluster definitions using the reference cut-off of ≤7 allele differences. CONCLUSIONS: This highlights that bioinformatics workflows dedicated to cgMLST allele calling are largely robust when paired-end reads are of high quality and when the sequencing depth is ≥40X.


Asunto(s)
Listeria monocytogenes , Genoma Bacteriano , Listeria monocytogenes/genética , Tipificación de Secuencias Multilocus , Filogenia , Secuenciación Completa del Genoma
16.
Aquaculture ; 548: 737637, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35177872

RESUMEN

Cichlid fish of the genus Oreochromis form the basis of the global tilapia aquaculture and fisheries industries. Broodstocks for aquaculture are often collected from wild populations, which in Africa may be from locations containing multiple Oreochromis species. However, many species are difficult to distinguish morphologically, hampering efforts to maintain good quality farmed strains. Additionally, non-native farmed tilapia populations are known to be widely distributed across Africa and to hybridize with native Oreochromis species, which themselves are important for capture fisheries. The morphological identification of these hybrids is particularly unreliable. Here, we describe the development of a single nucleotide polymorphism (SNP) genotyping panel from whole-genome resequencing data that enables targeted species identification in Tanzania. We demonstrate that an optimized panel of 96 genome-wide SNPs based on FST outliers performs comparably to whole genome resequencing in distinguishing species and identifying hybrids. We also show this panel outperforms microsatellite-based and phenotype-based classification methods. Case studies indicate several locations where introduced aquaculture species have become established in the wild, threatening native Oreochromis species. The novel SNP markers identified here represent an important resource for assessing broodstock purity in hatcheries and helping to conserve unique endemic biodiversity.

17.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042801

RESUMEN

Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.


Asunto(s)
Secuencia de Bases/genética , Eucariontes/genética , Genómica/ética , Animales , Biodiversidad , Evolución Biológica , Ecología , Ecosistema , Genoma , Genómica/métodos , Humanos , Filogenia
18.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042802

RESUMEN

A global international initiative, such as the Earth BioGenome Project (EBP), requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress toward its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies, and challenges may improve or change in the future, requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met.


Asunto(s)
Secuencia de Bases/genética , Eucariontes/genética , Genómica/normas , Animales , Biodiversidad , Genómica/métodos , Humanos , Estándares de Referencia , Valores de Referencia , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas
19.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042804

RESUMEN

The 2016 Peace Agreement has increased access to Colombia's unique ecosystems, which remain understudied and increasingly under threat. The Colombian government has recently announced its National Bioeconomic Strategy (NBS), founded on the sustainable characterization, management, and conservation of the nation's biodiversity as a means to achieve sustainability and peace. Molecular tools will accelerate such endeavors, but capacity remains limited in Colombia. The Earth Biogenome Project's (EBP) objective is to characterize the genomes of all eukaryotic life on Earth through networks of partner institutions focused on sequencing either specific taxa or eukaryotic communities at regional or national scales. Colombia's immense biodiversity and emerging network of stakeholders have inspired the creation of the national partnership "EBP-Colombia." Here, we discuss how this Colombian-driven collaboration between government, academia, and the private sector is integrating research with sustainable, environmentally focused strategies to develop Colombia's postconflict bioeconomy and conserve biological and cultural diversity. EBP-Colombia will accelerate the uptake of technology and promote partnership and exchange of knowledge among Colombian stakeholders and the EBP's global network of experts; assist with conservation strategies to preserve Colombia's vast biological wealth; and promote innovative approaches among public and private institutions in sectors such as agriculture, tourism, recycling, and medicine. EBP-Colombia can thus support Colombia's NBS with the objective of sustainable and inclusive development to address the many social, environmental, and economic challenges, including conflict, inequality, poverty, and low agricultural productivity, and so, offer an alternative model for economic development that similarly placed countries can adopt.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Genómica/métodos , Desarrollo Sostenible/tendencias , Agricultura/métodos , Biodiversidad , Colombia , Ecología , Ecosistema , Genoma/genética , Programas de Gobierno/tendencias , Desarrollo Sostenible/economía
20.
Nat Commun ; 12(1): 7130, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880245

RESUMEN

Acute infection is known to induce rapid expansion of hematopoietic stem cells (HSCs), but the mechanisms supporting this expansion remain incomplete. Using mouse models, we show that inducible CD36 is required for free fatty acid uptake by HSCs during acute infection, allowing the metabolic transition from glycolysis towards ß-oxidation. Mechanistically, high CD36 levels promote FFA uptake, which enables CPT1A to transport fatty acyl chains from the cytosol into the mitochondria. Without CD36-mediated FFA uptake, the HSCs are unable to enter the cell cycle, subsequently enhancing mortality in response to bacterial infection. These findings enhance our understanding of HSC metabolism in the bone marrow microenvironment, which supports the expansion of HSCs during pathogenic challenge.


Asunto(s)
Antígenos CD36/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Ácidos Grasos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Animales , Médula Ósea/metabolismo , Antígenos CD36/genética , Ciclo Celular , Glucólisis , Interacciones Microbiota-Huesped , Lipopolisacáridos/efectos adversos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Oxidación-Reducción , Infecciones por Salmonella , Salmonella typhimurium
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...