Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 280: 116560, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38865941

RESUMEN

Marine biofouling remains a huge concern for maritime industries and for environmental health. Although the current biocide-based antifouling coatings can prevent marine biofouling, their use has been associated with toxicity for the marine environment, being urgent to find sustainable alternatives. Previously, our research group has identified a prenylated chalcone (1) with promising antifouling activity against the settlement of larvae of the macrofouling species Mytilus galloprovincialis (EC50 = 16.48 µM and LC50 > 200 µM) and lower ecotoxicity when compared to Econea®, a commercial antifouling agent in use. Herein, a series of chalcone 1 analogues were designed and synthesized in order to obtain optimized antifouling compounds with improved potency while maintaining low ecotoxicity. Compounds 8, 15, 24, and 27 showed promising antifouling activity against the settlement of M. galloprovincialis larvae, being dihydrochalcone 27 the most potent. The effect of compound 24 was associated with the inhibition of acetylcholinesterase activity. Among the synthesized compounds, compound 24 also showed potent complementary activity against Navicula sp. (EC50 = 4.86 µM), similarly to the lead chalcone 1 (EC50 = 6.75 µM). Regarding the structure-activity relationship, the overall results demonstrate that the substitution of the chalcone of the lead compound 1 by a dihydrochalcone scaffold resulted in an optimized potency against the settlement of mussel larvae. Marine polyurethane (PU)-based coatings containing the best performed compound concerning anti-settlement activity (dihydrochalcone 27) were prepared, and mussel larvae adherence was reduced compared to control PU coatings.


Asunto(s)
Incrustaciones Biológicas , Larva , Mytilus , Animales , Incrustaciones Biológicas/prevención & control , Larva/efectos de los fármacos , Mytilus/efectos de los fármacos , Chalconas/farmacología , Chalconas/química , Relación Estructura-Actividad , Chalcona/farmacología , Chalcona/análogos & derivados , Chalcona/química , Desinfectantes/toxicidad , Desinfectantes/farmacología
3.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38396802

RESUMEN

Cancer is a complex disease characterized by several alterations, which confer, to the cells, the capacity to proliferate uncontrollably and to resist cellular death. Multiresistance to conventional chemotherapy drugs is often the cause of treatment failure; thus, the search for natural products or their derivatives with therapeutic action is essential. Chiral derivatives of xanthones (CDXs) have shown potential inhibitory activity against the growth of some human tumor cell lines. This work reports the screening of a library of CDXs, through viability assays, in different cancer cell lines: A375-C5, MCF-7, NCI-H460, and HCT-15. CDXs' effect was analyzed based on several parameters of cancer cells, and it was also verified if these compounds were substrates of glycoprotein-P (Pgp), one of the main mechanisms of resistance in cancer therapy. Pgp expression was evaluated in all cell lines, but no expression was observed, except for HCT-15. Also, when a humanized yeast expressing the human gene MDR1 was used, no conclusions could be drawn about CDXs as Pgp substrates. The selected CDXs did not induce significant differences in the metabolic parameters analyzed. These results show that some CDXs present promising antitumor activity, but other mechanisms should be triggered by these compounds.


Asunto(s)
Aminoácidos , Xantonas , Humanos , Xantonas/farmacología , Xantonas/química , Línea Celular Tumoral , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética
4.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256165

RESUMEN

Cancer is one of the primary global causes of death, thus addressing cancer therapy remains a significant challenge, especially in cases where cancers exhibit resistance to treatment [...].


Asunto(s)
Reposicionamiento de Medicamentos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico
5.
Molecules ; 28(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37894682

RESUMEN

The spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) relies on host cell surface glycans to facilitate interaction with the angiotensin-converting enzyme 2 (ACE-2) receptor. This interaction between ACE2 and the spike protein is a gateway for the virus to enter host cells and may be targeted by antiviral drugs to inhibit viral infection. Therefore, targeting the interaction between these two proteins is an interesting strategy to prevent SARS-CoV-2 infection. A library of glycan mimetics and derivatives was selected for a virtual screening performed against both ACE2 and spike proteins. Subsequently, in vitro assays were performed on eleven of the most promising in silico compounds to evaluate: (i) their efficacy in inhibiting cell infection by SARS-CoV-2 (using the Vero CCL-81 cell line as a model), (ii) their impact on ACE2 expression (in the Vero CCL-81 and MDA-MB-231 cell lines), and (iii) their cytotoxicity in a human lung cell line (A549). We identified five synthetic compounds with the potential to block SARS-CoV-2 infection, three of them without relevant toxicity in human lung cells. Xanthene 1 stood out as the most promising anti-SARS-CoV-2 agent, inhibiting viral infection and viral replication in Vero CCL-81 cells, without causing cytotoxicity to human lung cells.


Asunto(s)
Antineoplásicos , COVID-19 , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Unión Proteica , Antineoplásicos/farmacología , Antivirales/farmacología
6.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37895825

RESUMEN

We previously reported that chalcone CM-M345 (1) and diarylpentanoid BP-C4 (2) induced p53-dependent growth inhibitory activity in human cancer cells. Herein, CM-M345 (1) and BP-C4 (2) analogues were designed and synthesized in order to obtain more potent and selective compounds. Compounds 16, 17, 19, 20, and 22-24 caused pronounced in vitro growth inhibitory activity in HCT116 cells (0.09 < GI50 < 3.10 µM). Chemical optimization of CM-M345 (1) led to the identification of compound 36 with increased selectivity for HCT116 cells expressing wild-type p53 compared to its p53-null isogenic derivative and low toxicity to non-tumor HFF-1 cells. The molecular modification of BP-C4 (2) resulted in the discovery of compound 16 with more pronounced antiproliferative activity and being selective for HCT116 cells with p53, as well as 17 with enhanced antiproliferative activity against HCT116 cells and low toxicity to non-tumor cells. Compound 16 behaved as an inhibitor of p53-MDM2 interaction, and compound 17 was shown to induce apoptosis, associated with an increase in cleaved PARP and decreased levels of the anti-apoptotic protein Bcl-2. In silico studies allowed us to predict the druglikeness and ADMET properties for 16 and 17. Docking and molecular dynamics studies predicted that 16 could bind stably to the MDM2 binding pocket.

7.
Pharmaceuticals (Basel) ; 16(5)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37242465

RESUMEN

Photopharmacology is an approach that aims to be an alternative to classical chemotherapy. Herein, the different classes of photoswitches and photocleavage compounds and their biological applications are described. Proteolysis targeting chimeras (PROTACs) containing azobenzene moieties (PHOTACs) and photocleavable protecting groups (photocaged PROTACs) are also mentioned. Furthermore, porphyrins are referenced as successful photoactive compounds in a clinical context, such as in the photodynamic therapy of tumours as well as preventing antimicrobial resistance, namely in bacteria. Porphyrins combining photoswitches and photocleavage systems are highlighted, taking advantage of both photopharmacology and photodynamic action. Finally, porphyrins with antibacterial activity are described, taking advantage of the synergistic effect of photodynamic treatment and antibiotic therapy to overcome bacterial resistance.

8.
Curr Top Med Chem ; 23(13): 1171-1195, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36717997

RESUMEN

Drug repurposing is a strategy used to develop new treatments based on approved or investigational drugs outside the scope of their original clinical indication. Since this approach benefits from the original toxicity data of the repurposed drugs, the drug-repurposing strategy is timesaving, and inexpensive. It has a higher success rate compared to traditional drug discovery. Several repurposing candidates have been identified in silico screening and in vitro methodologies. One of the best examples is non-steroidal anti-inflammatory drugs (NSAIDs). Tumor-promoting inflammation is one of the hallmarks of cancer, revealing a connection between inflammatory processes and tumor progression and development. This explains why using NSAIDs in the context of neoplasia has become a topic of interest. Indeed, identifying NSAIDs with antitumor activity has become a promising strategy for finding novel cancer treatment opportunities. Indeed, several commercial anti-inflammatory drugs, including aspirin, ibuprofen, diclofenac, celecoxib, tepoxalin and cyclovalone, naproxen, and indomethacin have presented antitumor activity, and some of them are already in clinical trials for cancer treatment. However, the benefits and complications of using NSAIDs for cancer treatment must be carefully evaluated, particularly for cancer patients with no further therapeutic options available. This review article provides insight into the drug repurposing strategy and describes some of the well-known NSAIDs that have been investigated as repurposed drugs with potential anticancer activity.


Asunto(s)
Reposicionamiento de Medicamentos , Neoplasias , Humanos , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Naproxeno/efectos adversos , Antiinflamatorios , Neoplasias/tratamiento farmacológico
9.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362104

RESUMEN

Natural products have attracted attention due to their safety and potential effectiveness as anti-inflammatory drugs. Particularly, xanthones owning a unique 9H-xanthen-9-one scaffold, are endowed with a large diversity of medical applications, including antioxidant and anti-inflammatory activities, because their core accommodates a vast variety of substituents at different positions. Among others, α- and γ-mangostin are the major known xanthones purified from Garcinia mangostana with demonstrated anti-inflammatory and antioxidant effects by in vitro and in vivo modulation of the Nrf2 (nuclear factor erythroid-derived 2-like 2) pathway. However, the main mechanism of action of xanthones and their derivatives is still only partially disclosed, and further investigations are needed to improve their potential clinical outcomes. In this light, a library of xanthone derivatives was synthesized and biologically evaluated in vitro on human macrophages under pro-inflammatory conditions. Furthermore, structure-activity relationship (SAR) studies were performed by means of matched molecular pairs (MMPs). The data obtained revealed that the most promising compounds in terms of biocompatibility and counteraction of cytotoxicity are the ones that enhance the Nrf2 translocation, confirming a tight relationship between the xanthone scaffold and the Nrf2 activation as a sign of intracellular cell response towards oxidative stress and inflammation.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Xantonas , Humanos , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Macrófagos , Estrés Oxidativo , Xantonas/farmacología
10.
ACS Med Chem Lett ; 13(2): 225-235, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35178179

RESUMEN

Malaria, leishmaniasis, and sleeping sickness are potentially fatal diseases that represent a real health risk for more than 3,5 billion people. New antiparasitic compounds are urgent leading to a constant search for novel scaffolds. Herein, pyrazino[2,1-b]quinazoline-3,6-diones containing indole alkaloids were explored for their antiparasitic potential against Plasmodium falciparum, Trypanosoma brucei, and Leishmania infantum. The synthetic libraries furnished promising hit compounds that are species specific (7, 12) or with broad antiparasitic activity (8). Structure-activity relationships were more evident for Plasmodium with anti-isomers (1S,4R) possessing excellent antimalarial activity, while the presence of a substituent on the anthranilic acid moiety had a negative effect on the activity. Hit compounds against malaria did not inhibit ß-hematin, and in silico studies predicted these molecules as possible inhibitors for prolyl-tRNA synthetase both from Plasmodium and Leishmania. These results disclosed a potential new chemotype for further optimization toward novel and affordable antiparasitic drugs.

11.
Molecules ; 26(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34885726

RESUMEN

Previously, we reported the in vitro growth inhibitory effect of diarylpentanoid BP-M345 on human cancer cells. Nevertheless, at that time, the cellular mechanism through which BP-M345 exerts its growth inhibitory effect remained to be explored. In the present work, we report its mechanism of action on cancer cells. The compound exhibits a potent tumor growth inhibitory activity with high selectivity index. Mechanistically, it induces perturbation of the spindles through microtubule instability. As a consequence, treated cells exhibit irreversible defects in chromosome congression during mitosis, which induce a prolonged spindle assembly checkpoint-dependent mitotic arrest, followed by massive apoptosis, as revealed by live cell imaging. Collectively, the results indicate that the diarylpentanoid BP-M345 exerts its antiproliferative activity by inhibiting mitosis through microtubule perturbation and causing cancer cell death, thereby highlighting its potential as antitumor agent.


Asunto(s)
Antineoplásicos/química , Productos Biológicos/química , Mitosis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Productos Biológicos/farmacología , Proliferación Celular/efectos de los fármacos , Segregación Cromosómica , Células HCT116 , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Microtúbulos/química , Microtúbulos/efectos de los fármacos , Mitosis/genética , Neoplasias/genética
12.
Sensors (Basel) ; 21(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502770

RESUMEN

A supramolecular atropine sensor was developed, using cucurbit[6]uril as the recognition element. The solid-contact electrode is based on a polymeric membrane incorporating cucurbit[6]uril (CB[6]) as an ionophore, 2-nitrophenyl octyl ether as a solvent mediator, and potassium tetrakis (4-chlorophenyl) borate as an additive. In a MES-NaOH buffer at pH 6, the performance of the atropine sensor is characterized by a slope of (58.7 ± 0.6) mV/dec with a practical detection limit of (6.30 ± 1.62) × 10-7 mol/L and a lower limit of the linear range of (1.52 ± 0.64) × 10-6 mol/L. Selectivity coefficients were determined for different ions and excipients. The obtained results were bolstered by the docking and spectroscopic studies which demonstrated the interaction between atropine and CB[6]. The accuracy of the potentiometric analysis of atropine content in certified reference material was evaluated by the t-Student test. The herein proposed sensor answers the need for reliable methods providing better management of this hospital drug shelf-life while reducing its flush and remediation costs.


Asunto(s)
Atropina , Polímeros , Electrodos , Humanos , Ionóforos , Potenciometría
13.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203998

RESUMEN

The overexpression of efflux pumps is one of the causes of multidrug resistance, which leads to the inefficacy of drugs. This plays a pivotal role in antimicrobial resistance, and the most notable pumps are the AcrAB-TolC system (AcrB belongs to the resistance-nodulation-division family) and the NorA, from the major facilitator superfamily. In bacteria, these structures can also favor virulence and adaptation mechanisms, such as quorum-sensing and the formation of biofilm. In this study, the design and synthesis of a library of thioxanthones as potential efflux pump inhibitors are described. The thioxanthone derivatives were investigated for their antibacterial activity and inhibition of efflux pumps, biofilm formation, and quorum-sensing. The compounds were also studied for their potential to interact with P-glycoprotein (P-gp, ABCB1), an efflux pump present in mammalian cells, and for their cytotoxicity in both mouse fibroblasts and human Caco-2 cells. The results concerning the real-time ethidium bromide accumulation may suggest a potential bacterial efflux pump inhibition, which has not yet been reported for thioxanthones. Moreover, in vitro studies in human cells demonstrated a lack of cytotoxicity for concentrations up to 20 µM in Caco-2 cells, with some derivatives also showing potential for P-gp modulation.

14.
ChemMedChem ; 16(19): 2969-2981, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34170069

RESUMEN

In silico studies of a library of diarylpentanoids led us to the identification of potential new MDM2/X ligands. The diarylpentanoids with the best docking scores obeying the druglikeness and ADMET prediction properties were subsequently synthesized and evaluated for their antiproliferative activity on colon cancer HCT116 and fibroblasts HFF-1 cells. The effect on p53-MDM2/X interactions was evaluated through yeast-based assays for compounds showing potent antiproliferative activity in HCT116 cells and low toxicity in normal cells, resulting in the identification of a potential dual inhibitor. Moreover, its antiproliferative effect was significantly reduced in the absence of p53 and in MDA-MB-231 cells expressing a mutant p53 form. The antiproliferative effect of this compound was associated with induction of cell cycle arrest, apoptosis, PARP cleavage and increased p53 and its transcriptional targets, p21 and PUMA, in HCT116 cells. Docking poses and residues involved in the inhibition of p53-MDM2/X interactions were predicted by docking studies.


Asunto(s)
Antineoplásicos/farmacología , Ciclohexanonas/farmacología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclohexanonas/síntesis química , Ciclohexanonas/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/metabolismo
15.
Antibiotics (Basel) ; 10(5)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069329

RESUMEN

The emergence of multidrug and extensively drug-resistant pathogenic bacteria able to resist to the action of a wide range of antibiotics is becoming a growing problem for public health. The search for new compounds with the potential to help in the reversion of bacterial resistance plays an important role in current medicinal chemistry research. Under this scope, bacterial efflux pumps are responsible for the efflux of antimicrobials, and their inhibition could reverse resistance. In this study, the multidrug resistance reversing activity of a series of xanthones was investigated. Firstly, docking studies were performed in the AcrAB-TolC efflux pump and in a homology model of the NorA pump. Then, the effects of twenty xanthone derivatives on bacterial growth were evaluated in Staphylococcus aureus 272123 and in the acrA gene-inactivated mutant Salmonella enterica serovar Typhimurium SL1344 (SE03). Their efflux pump inhibitory properties were assessed using real-time fluorimetry. Assays concerning the activity of these compounds towards the inhibition of biofilm formation and quorum sensing have also been performed. Results showed that a halogenated phenylmethanamine xanthone derivative displayed an interesting profile, as far as efflux pump inhibition and biofilm formation were concerned. To the best of our knowledge, this is the first report of xanthones as potential efflux pump inhibitors.

16.
Toxicol Appl Pharmacol ; 416: 115442, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33609514

RESUMEN

Cathinone derivatives are the most representative group within new drugs market, which have been described as neurotoxic. Since cathinones, as pentedrone and methylone, are available as racemates, it is our aim to study the neuronal cytotoxicity induced by each enantiomer. Therefore, a dopaminergic SH-SY5Y cell line was used to evaluate the hypothesis of enantioselectivity of pentedrone and methylone enantiomers on cytotoxicity, oxidative stress, and membrane efflux transport (confirmed by in silico studies). Our study demonstrated enantioselectivity of these cathinones, being the S-(+)-pentedrone and R-(+)-methylone the most oxidative enantiomers and also the most cytotoxic, suggesting the oxidative stress as main cytotoxic mechanism, as previously described in in vitro studies. Additionally, the efflux transporter multidrug resistance associated protein 1 (MRP1) seems to play, together with GSH, a selective protective role against the cytotoxicity induced by R-(-)-pentedrone enantiomer. It was also observed an enantioselectivity in the binding to P-glycoprotein (P-gp), another efflux protein, being the R-(-)-pentedrone and S-(-)-methylone the most transported enantiomeric compounds. These results were confirmed, in silico, by docking studies, revealing that R-(-)-pentedrone is the enantiomer with highest affinity to MRP1 and S-(-)-methylone and R-(-)-pentedrone are the enantiomers with highest affinity to P-gp. In conclusion, our data demonstrated that pentedrone and methylone present enantioselectivity in their cytotoxicity, which seems to involve different oxidative reactivity as well as different affinity to the P-gp and MRP1 that together with GSH play a protective role.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Alcaloides/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Metanfetamina/análogos & derivados , Metilaminas/toxicidad , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Pentanonas/toxicidad , Alcaloides/química , Alcaloides/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Humanos , Metanfetamina/química , Metanfetamina/metabolismo , Metanfetamina/toxicidad , Metilaminas/química , Metilaminas/metabolismo , Simulación del Acoplamiento Molecular , Pentanonas/química , Pentanonas/metabolismo , Unión Proteica , Estereoisomerismo
18.
Molecules ; 26(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467544

RESUMEN

This work reviews the contributions of the corresponding author (M.M.M.P.) and her research group to Medicinal Chemistry concerning the isolation from plant and marine sources of xanthone derivatives as well as their synthesis, biological/pharmacological activities, formulation and analytical applications. Although her group activity has been spread over several chemical families with relevance in Medicinal Chemistry, the main focus of the investigation and research has been in the xanthone family. Xanthone derivatives have a variety of activities with great potential for therapeutic applications due to their versatile framework. The group has contributed with several libraries of xanthones derivatives, with a variety of activities such as antitumor, anticoagulant, antiplatelet, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective, antioxidant, and multidrug resistance reversal effects. Besides therapeutic applications, our group has also developed xanthone derivatives with analytical applications as chiral selectors for liquid chromatography and for maritime application as antifouling agents for marine paints. Chemically, it has been challenging to afford green chemistry methods and achieve enantiomeric purity of chiral derivatives. In this review, the structures of the most significant compounds will be presented.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/farmacología , Bibliotecas de Moléculas Pequeñas/química , Xantonas/química , Xantonas/farmacología , Animales , Productos Biológicos/aislamiento & purificación , Química Farmacéutica , Humanos , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/farmacología , Xantonas/aislamiento & purificación
19.
Mar Drugs ; 19(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374188

RESUMEN

Over the last decades, antifouling coatings containing biocidal compounds as active ingredients were used to prevent biofouling, and eco-friendly alternatives are needed. Previous research from our group showed that polymethoxylated chalcones and glycosylated flavones obtained by synthesis displayed antifouling activity with low toxicity. In this work, ten new polymethoxylated flavones and chalcones were synthesized for the first time, including eight with a triazole moiety. Eight known flavones and chalcones were also synthesized and tested in order to construct a quantitative structure-activity relationship (QSAR) model for these compounds. Three different antifouling profiles were found: three compounds (1b, 11a and 11b) exhibited anti-settlement activity against a macrofouling species (Mytilus galloprovincialis), two compounds (6a and 6b) exhibited inhibitory activity against the biofilm-forming marine bacteria Roseobacter litoralis and one compound (7b) exhibited activity against both mussel larvae and microalgae Navicula sp. Hydrogen bonding acceptor ability of the molecule was the most significant descriptor contributing positively to the mussel larvae anti-settlement activity and, in fact, the triazolyl glycosylated chalcone 7b was the most potent compound against this species. The most promising compounds were not toxic to Artemia salina, highlighting the importance of pursuing the development of new synthetic antifouling agents as an ecofriendly and sustainable alternative for the marine industry.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Flavonoides/farmacología , Glicósidos/farmacología , Microalgas/efectos de los fármacos , Mytilus/efectos de los fármacos , Roseobacter/efectos de los fármacos , Triazoles/farmacología , Animales , Artemia/efectos de los fármacos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Química Clic , Flavonoides/síntesis química , Flavonoides/toxicidad , Glicósidos/síntesis química , Glicósidos/toxicidad , Tecnología Química Verde , Enlace de Hidrógeno , Microalgas/crecimiento & desarrollo , Estructura Molecular , Mytilus/crecimiento & desarrollo , Relación Estructura-Actividad Cuantitativa , Roseobacter/crecimiento & desarrollo , Triazoles/síntesis química , Triazoles/toxicidad , Microbiología del Agua
20.
Biomolecules ; 10(8)2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751491

RESUMEN

The development of alternative ecological and effective antifouling technologies is still challenging. Synthesis of nature-inspired compounds has been exploited, given the potential to assure commercial supplies of potential ecofriendly antifouling agents. In this direction, the antifouling activity of a series of nineteen synthetic small molecules, with chemical similarities with natural products, were exploited in this work. Six (4, 5, 7, 10, 15 and 17) of the tested xanthones showed in vivo activity toward the settlement of Mytilus galloprovincialis larvae (EC50: 3.53-28.60 µM) and low toxicity to this macrofouling species (LC50 > 500 µM and LC50/EC50: 17.42-141.64), and two of them (7 and 10) showed no general marine ecotoxicity (<10% of Artemia salina mortality) after 48 h of exposure. Regarding the mechanism of action in mussel larvae, the best performance compounds 4 and 5 might be acting by the inhibition of acetylcholinesterase activity (in vitro and in silico studies), while 7 and 10 showed specific targets (proteomic studies) directly related with the mussel adhesive structure (byssal threads), given by the alterations in the expression of Mytilus collagen proteins (PreCols) and proximal thread proteins (TMPs). A quantitative structure-activity relationship (QSAR) model was built with predictive capacity to enable speeding the design of new potential active compounds.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Mytilus/efectos de los fármacos , Xantonas/química , Xantonas/toxicidad , Animales , Productos Biológicos/síntesis química , Productos Biológicos/química , Productos Biológicos/toxicidad , Larva/efectos de los fármacos , Larva/fisiología , Mytilus/fisiología , Xantonas/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...