Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2225, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472177

RESUMEN

Single-particle cryo-EM is widely used to determine enzyme-nucleosome complex structures. However, cryo-EM sample preparation remains challenging and inconsistent due to complex denaturation at the air-water interface (AWI). Here, to address this issue, we develop graphene-oxide-coated EM grids functionalized with either single-stranded DNA (ssDNA) or thiol-poly(acrylic acid-co-styrene) (TAASTY) co-polymer. These grids protect complexes between the chromatin remodeler SNF2h and nucleosomes from the AWI and facilitate collection of high-quality micrographs of intact SNF2h-nucleosome complexes in the absence of crosslinking. The data yields maps ranging from 2.3 to 3 Å in resolution. 3D variability analysis reveals nucleotide-state linked conformational changes in SNF2h bound to a nucleosome. In addition, the analysis provides structural evidence for asymmetric coordination between two SNF2h protomers acting on the same nucleosome. We envision these grids will enable similar detailed structural analyses for other enzyme-nucleosome complexes and possibly other protein-nucleic acid complexes in general.


Asunto(s)
Grafito , Nucleosomas , Grafito/química , Microscopía por Crioelectrón , Agua
2.
bioRxiv ; 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37546986

RESUMEN

Single-particle cryo-EM is widely used to determine enzyme-nucleosome complex structures. However, cryo-EM sample preparation remains challenging and inconsistent due to complex denaturation at the air-water interface (AWI). To address this issue, we developed graphene-oxide-coated EM grids functionalized with either single-stranded DNA (ssDNA) or thiol-poly(acrylic acid-co-styrene) (TAASTY) co-polymer. These grids protect complexes between the chromatin remodeler SNF2h and nucleosomes from the AWI and facilitated collection of high-quality micrographs of intact SNF2h-nucleosome complexes in the absence of crosslinking. The data yields maps ranging from 2.3 to 3 Å in resolution. 3D variability analysis reveals nucleotide-state linked conformational changes in SNF2h bound to a nucleosome. In addition, the analysis provides structural evidence for asymmetric coordination between two SNF2h protomers acting on the same nucleosome. We envision these grids will enable similar detailed structural analyses for other enzyme-nucleosome complexes and possibly other protein-nucleic acid complexes in general.

3.
IUCrJ ; 7(Pt 6): 1142-1150, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33209325

RESUMEN

In cryogenic electron microscopy (cryo-EM) of radiation-sensitive biological samples, both the signal-to-noise ratio (SNR) and the contrast of images are critically important in the image-processing pipeline. Classic methods improve low-frequency image contrast experimentally, by imaging with high defocus, or computationally, by applying various types of low-pass filter. These contrast improvements typically come at the expense of the high-frequency SNR, which is suppressed by high-defocus imaging and removed by low-pass filtration. Recently, convolutional neural networks (CNNs) trained to denoise cryo-EM images have produced impressive gains in image contrast, but it is not clear how these algorithms affect the information content of the image. Here, a denoising CNN for cryo-EM images was implemented and a quantitative evaluation of SNR enhancement, induced bias and the effects of denoising on image processing and three-dimensional reconstructions was performed. The study suggests that besides improving the visual contrast of cryo-EM images, the enhanced SNR of denoised images may be used in other parts of the image-processing pipeline, such as classification and 3D alignment. These results lay the groundwork for the use of denoising CNNs in the cryo-EM image-processing pipeline beyond particle picking.

4.
J Struct Biol ; 204(2): 291-300, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30114512

RESUMEN

The recent successes of cryo-electron microscopy fostered great expectation of solving many new and previously recalcitrant biomolecular structures. However, it also brings with it the danger of compromising the validity of the outcomes if not done properly. The Map Challenge is a first step in assessing the state of the art and to shape future developments in data processing. The organizers presented seven cases for single particle reconstruction, and 27 members of the community responded with 66 submissions. Seven groups analyzed these submissions, resulting in several assessment reports, summarized here. We devised a range of analyses to evaluate the submitted maps, including visual impressions, Fourier shell correlation, pairwise similarity and interpretation through modeling. Unfortunately, we did not find strong trends. We ascribe this to the complexity of the challenge, dealing with multiple cases, software packages and processing approaches. This puts the user in the spotlight, where his/her choices becomes the determinant of map quality. The future focus should therefore be on promulgating best practices and encapsulating these in the software. Such practices include adherence to validation principles, most notably the processing of independent sets, proper resolution-limited alignment, appropriate masking and map sharpening. We consider the Map Challenge to be a highly valuable exercise that should be repeated frequently or on an ongoing basis.


Asunto(s)
Microscopía por Crioelectrón/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Conformación Proteica , Programas Informáticos
5.
J Struct Biol ; 204(1): 80-84, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30017701

RESUMEN

Graphene oxide (GO) sheets have been used successfully as a supporting substrate film in several recent cryogenic electron-microscopy (cryo-EM) studies of challenging biological macromolecules. However, difficulties in preparing GO-covered holey carbon EM grids have limited their widespread use. Here, we report a simple and robust method for covering holey carbon EM grids with GO sheets and demonstrate that these grids can be used for high-resolution single particle cryo-EM. GO substrates adhere macromolecules, allowing cryo-EM grid preparation with lower specimen concentrations and provide partial protection from the air-water interface. Additionally, the signal of the GO lattice beneath the frozen-hydrated specimen can be discerned in many motion-corrected micrographs, providing a high-resolution fiducial for evaluating beam-induced motion correction.


Asunto(s)
Microscopía por Crioelectrón/métodos , Grafito/química , Óxidos/química , Manejo de Especímenes/métodos
6.
Cell Rep ; 19(10): 2033-2044, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591576

RESUMEN

The hexameric AAA+ ATPases Rvb1 and Rvb2 (Rvbs) are essential for diverse processes ranging from metabolic signaling to chromatin remodeling, but their functions are unknown. While originally thought to act as helicases, recent proposals suggest that Rvbs act as protein assembly chaperones. However, experimental evidence for chaperone-like behavior is lacking. Here, we identify a potent protein activator of the Rvbs, a domain in the Ino80 ATPase subunit of the INO80 chromatin-remodeling complex, termed Ino80INS. Ino80INS stimulates Rvbs' ATPase activity by 16-fold while concomitantly promoting their dodecamerization. Using mass spectrometry, cryo-EM, and integrative modeling, we find that Ino80INS binds asymmetrically along the dodecamerization interface, resulting in a conformationally flexible dodecamer that collapses into hexamers upon ATP addition. Our results demonstrate the chaperone-like potential of Rvb1/Rvb2 and suggest a model where binding of multiple clients such as Ino80 stimulates ATP-driven cycling between hexamers and dodecamers, providing iterative opportunities for correct subunit assembly.


Asunto(s)
Chaperonas Moleculares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dominios Proteicos , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Angew Chem Int Ed Engl ; 55(31): 8984-7, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27305488

RESUMEN

Molecular imaging holds considerable promise for elucidating biological processes in normal physiology as well as disease states, but requires noninvasive methods for identifying analytes at sub-micromolar concentrations. Particularly useful are genetically encoded, single-protein reporters that harness the power of molecular biology to visualize specific molecular processes, but such reporters have been conspicuously lacking for in vivo magnetic resonance imaging (MRI). Herein, we report TEM-1 ß-lactamase (bla) as a single-protein reporter for hyperpolarized (HP) (129) Xe NMR, with significant saturation contrast at 0.1 µm. Xenon chemical exchange saturation transfer (CEST) interactions with the primary allosteric site in bla give rise to a unique saturation peak at 255 ppm, well removed (≈60 ppm downfield) from the (129) Xe-H2 O peak. Useful saturation contrast was also observed for bla expressed in bacterial cells and mammalian cells.


Asunto(s)
Imagen Molecular , Xenón/metabolismo , beta-Lactamasas/metabolismo , Células HEK293 , Humanos , Espectroscopía de Resonancia Magnética , Xenón/química , Isótopos de Xenón , beta-Lactamasas/química
9.
Elife ; 52016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27111525

RESUMEN

Ubiquitin is essential for eukaryotic life and varies in only 3 amino acid positions between yeast and humans. However, recent deep sequencing studies indicate that ubiquitin is highly tolerant to single mutations. We hypothesized that this tolerance would be reduced by chemically induced physiologic perturbations. To test this hypothesis, a class of first year UCSF graduate students employed deep mutational scanning to determine the fitness landscape of all possible single residue mutations in the presence of five different small molecule perturbations. These perturbations uncover 'shared sensitized positions' localized to areas around the hydrophobic patch and the C-terminus. In addition, we identified perturbation specific effects such as a sensitization of His68 in HU and a tolerance to mutation at Lys63 in DTT. Our data show how chemical stresses can reduce buffering effects in the ubiquitin proteasome system. Finally, this study demonstrates the potential of lab-based interdisciplinary graduate curriculum.


Asunto(s)
Análisis Mutacional de ADN , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Saccharomyces cerevisiae/enzimología , Estrés Fisiológico , Ubiquitina/genética , Ubiquitina/metabolismo , Biología/educación , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/fisiología , Estudiantes , Universidades
10.
Proc Natl Acad Sci U S A ; 113(2): E137-45, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26719417

RESUMEN

The transient receptor potential cation channel subfamily V member 1 (TRPV1) or vanilloid receptor 1 is a nonselective cation channel that is involved in the detection and transduction of nociceptive stimuli. Inflammation and nerve damage result in the up-regulation of TRPV1 transcription, and, therefore, modulators of TRPV1 channels are potentially useful in the treatment of inflammatory and neuropathic pain. Understanding the binding modes of known ligands would significantly contribute to the success of TRPV1 modulator drug design programs. The recent cryo-electron microscopy structure of TRPV1 only provides a coarse characterization of the location of capsaicin (CAPS) and resiniferatoxin (RTX). Herein, we use the information contained in the experimental electron density maps to accurately determine the binding mode of CAPS and RTX and experimentally validate the computational results by mutagenesis. On the basis of these results, we perform a detailed analysis of TRPV1-ligand interactions, characterizing the protein ligand contacts and the role of individual water molecules. Importantly, our results provide a rational explanation and suggestion of TRPV1 ligand modifications that should improve binding affinity.


Asunto(s)
Capsaicina/metabolismo , Diterpenos/metabolismo , Activación del Canal Iónico , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/metabolismo , Aminoácidos/metabolismo , Sitios de Unión , Capsaicina/química , Microscopía por Crioelectrón , Diterpenos/química , Electricidad , Ligandos , Simulación del Acoplamiento Molecular , Mutagénesis/genética , Proteínas Mutantes/química , Electricidad Estática , Canales Catiónicos TRPV/química , Agua
11.
J Gen Physiol ; 146(1): 37-50, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26078053

RESUMEN

The transient receptor potential (TRP) channel superfamily plays a central role in transducing diverse sensory stimuli in eukaryotes. Although dissimilar in sequence and domain organization, all known TRP channels act as polymodal cellular sensors and form tetrameric assemblies similar to those of their distant relatives, the voltage-gated potassium (Kv) channels. Here, we investigated the related questions of whether the allosteric mechanism underlying polymodal gating is common to all TRP channels, and how this mechanism differs from that underpinning Kv channel voltage sensitivity. To provide insight into these questions, we performed comparative sequence analysis on large, comprehensive ensembles of TRP and Kv channel sequences, contextualizing the patterns of conservation and correlation observed in the TRP channel sequences in light of the well-studied Kv channels. We report sequence features that are specific to TRP channels and, based on insight from recent TRPV1 structures, we suggest a model of TRP channel gating that differs substantially from the one mediating voltage sensitivity in Kv channels. The common mechanism underlying polymodal gating involves the displacement of a defect in the H-bond network of S6 that changes the orientation of the pore-lining residues at the hydrophobic gate.


Asunto(s)
Secuencia Conservada/genética , Activación del Canal Iónico/genética , Canales de Potencial de Receptor Transitorio/genética , Regulación Alostérica/genética , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Canales de Potasio/genética , Análisis de Secuencia
12.
J Gen Physiol ; 143(2): 145-56, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24470486

RESUMEN

Voltage-sensor domains (VSDs) are modular biomolecular machines that transduce electrical signals in cells through a highly conserved activation mechanism. Here, we investigate sequence-function relationships in VSDs with approaches from information theory and probabilistic modeling. Specifically, we collect over 6,600 unique VSD sequences from diverse, long-diverged phylogenetic lineages and relate the statistical properties of this ensemble to functional constraints imposed by evolution. The VSD is a helical bundle with helices labeled S1-S4. Surrounding conserved VSD residues such as the countercharges and the S2 phenylalanine, we discover sparse networks of coevolving residues. Additional networks are found lining the VSD lumen, tuning the local hydrophilicity. Notably, state-dependent contacts and the absence of coevolution between S4 and the rest of the bundle are imprints of the activation mechanism on the VSD sequence ensemble. These design principles rationalize existing experimental results and generate testable hypotheses.


Asunto(s)
Evolución Molecular , Activación del Canal Iónico/fisiología , Canales Iónicos/fisiología , Cadenas de Markov , Secuencia de Aminoácidos , Canales Iónicos/química , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...