Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Hum Mutat ; 35(12): 1459-68, 2014 Dec.
Article En | MEDLINE | ID: mdl-25196463

Congenital heart defects (CHDs) are the most common major birth defects and the leading cause of death from congenital malformations. The etiology remains largely unknown, though genetic variants clearly contribute. In a previous study, we identified a large copy-number variant (CNV) that deleted 46 genes in a patient with a malalignment type ventricular septal defect (VSD). The CNV included the gene NTRK3 encoding neurotrophic tyrosine kinase receptor C (TrkC), which is essential for normal cardiogenesis in animal models. To evaluate the role of NTRK3 in human CHDs, we studied 467 patients with related heart defects for NTRK3 mutations. We identified four missense mutations in four patients with VSDs that were not found in ethnically matched controls and were predicted to be functionally deleterious. Functional analysis using neuroblastoma cell lines expressing mutant TrkC demonstrated that one of the mutations (c.278C>T, p.T93M) significantly reduced autophosphorylation of TrkC in response to ligand binding, subsequently decreasing phosphorylation of downstream target proteins. In addition, compared with wild type, three of the four cell lines expressing mutant TrkC showed altered cell growth in low-serum conditions without supplemental neurotrophin 3. These findings suggest a novel pathophysiological mechanism involving NTRK3 in the development of VSDs.


Heart Defects, Congenital/genetics , Mutation, Missense , Receptor, trkC/genetics , Signal Transduction , Amino Acid Sequence , Blotting, Western , Cell Line , Cohort Studies , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Phosphorylation , Receptor, trkC/chemistry , Receptor, trkC/metabolism , Sequence Homology, Amino Acid
2.
Methods Mol Biol ; 1185: 181-94, 2014.
Article En | MEDLINE | ID: mdl-25062629

This chapter describes a two-dimensional "monolayer" system for differentiating human pluripotent stem cells (PSCs) into "primitive" hematopoietic progenitor cells (HPCs) resembling those produced in vivo by the early embryonic yolk sac. This experimental system utilizes defined conditions without serum or feeder cells. Cytokines are added sequentially to stimulate the formation of mesoderm and its subsequent patterning to hematopoietic progenitors. The HPCs produced by this protocol have multi-lineage potential (erythroid, megakaryocyte, and myeloid) and can be isolated as a homogeneous population for use in standard hematopoietic studies including liquid expansion to mature lineages and colony assays. In addition, the HPCs can be cryopreserved for distribution or analysis at later times. The HPCs generated by this protocol have been used successfully to better define intrinsic variation in hematopoietic potential between different PSC lines and to model human hematopoietic diseases using patient-derived induced pluripotent stem cells.


Cell Differentiation , Hematopoietic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Animals , Cell Culture Techniques , Cell Line , Cell Lineage , Erythroid Cells/cytology , Humans , Megakaryocytes/cytology , Mice
3.
Stem Cell Res ; 12(2): 441-51, 2014 Mar.
Article En | MEDLINE | ID: mdl-24412757

The Wnt gene family consists of structurally related genes encoding secreted signaling molecules that have been implicated in many developmental processes, including regulation of cell fate and patterning during embryogenesis. Previously, we found that Wnt signaling is required for primitive or yolk sac-derived-erythropoiesis using the murine embryonic stem cell (ESC) system. Here, we examine the effect of Wnt signaling on the formation of early hematopoietic progenitors derived from human ESCs. The first hematopoietic progenitor cells in the human ESC system express the pan-hematopoietic marker CD41 and the erythrocyte marker, glycophorin A or CD235. We have developed a novel serum-free, feeder-free, adherent differentiation system that can efficiently generate large numbers of CD41+CD235+ cells. We demonstrate that this cell population contains progenitors not just for primitive erythroid and megakaryocyte cells but for the myeloid lineage as well and term this population the primitive common myeloid progenitor (CMP). Treatment of mesoderm-specified cells with Wnt3a led to a loss of hematopoietic colony-forming ability while the inhibition of canonical Wnt signaling with DKK1 led to an increase in the number of primitive CMPs. Canonical Wnt signaling also inhibits the expansion and/or survival of primitive erythrocytes and megakaryocytes, but not myeloid cells, derived from this progenitor population. These findings are in contrast to the role of Wnt signaling during mouse ESC differentiation and demonstrate the importance of the human ESC system in studying species-specific differences in development.


Embryonic Stem Cells/metabolism , Hematopoietic Stem Cells/metabolism , Megakaryocytes/metabolism , Wnt Signaling Pathway/physiology , Animals , Cell Differentiation/physiology , Cell Lineage , Embryonic Stem Cells/cytology , Flow Cytometry , Hematopoiesis , Hematopoietic Stem Cells/cytology , Humans , Megakaryocytes/cytology , Mice
4.
Stem Cells ; 32(5): 1337-46, 2014 May.
Article En | MEDLINE | ID: mdl-24446170

MicroRNAs (miRNAs) can control stem cell differentiation by targeting mRNAs. Using 96-well plate electroporation, we screened 466 human miRNA mimics by four-color flow cytometry to explore differentiation of common myeloid progenitors (CMP) derived from human embryonic stem cells (hESCs). The transfected cells were then cultured in a cytokine cocktail that supported multiple hematopoietic lineages. At 4-5 days post-transfection, flow cytometry of erythroid (CD235(+)CD41(-)), megakaryocyte (CD41(+)CD42(+)), and myeloid (CD18(+)CD235(-)) lineages revealed miR-105 as a novel enhancer of megakaryocyte production during in vitro primitive hematopoiesis. In hESC-derived CMPs, miR-105 caused a sixfold enhancement in megakaryocyte production. miR-513a, miR-571, and miR-195 were found to be less potent megakaryocyte enhancers. We confirmed the relevance of miR-105 in adult megakaryopoiesis by demonstrating increased megakaryocyte yield and megakaryocyte colony forming potential in human adult CD34(+) cells derived from peripheral blood. In addition, adult CD34(+) cells express endogenous miR-105 during megakaryocyte differentiation. siRNA knockdown of the hematopoietic transcription factor c-Myb caused a similar enhancement of megakaryocyte production as miR-105. Finally, a luciferase/c-Myb-3'UTR construct and Western blot analysis demonstrated that the hematopoietic transcription factor c-Myb mRNA was a target of miR-105. We report a novel hESC-based miR screening platform and demonstrate that miR-105 is an enhancer of megakaryopoiesis in both primitive and definitive hematopoiesis.


Cell Differentiation/genetics , Embryonic Stem Cells/metabolism , MicroRNAs/genetics , Thrombopoiesis/genetics , 3' Untranslated Regions/genetics , Adult , Antigens, CD34/metabolism , Blotting, Western , CD18 Antigens/metabolism , Cell Lineage/genetics , Embryonic Stem Cells/cytology , Erythroid Cells/cytology , Erythroid Cells/metabolism , Flow Cytometry , Humans , Megakaryocytes/cytology , Megakaryocytes/metabolism , MicroRNAs/metabolism , Myeloid Cells/cytology , Myeloid Cells/metabolism , Platelet Glycoprotein GPIb-IX Complex/metabolism , Platelet Membrane Glycoprotein IIb/metabolism , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction
5.
Blood ; 123(5): 753-7, 2014 Jan 30.
Article En | MEDLINE | ID: mdl-24335497

Megakaryocyte-specific transgene expression in patient-derived induced pluripotent stem cells (iPSCs) offers a new approach to study and potentially treat disorders affecting megakaryocytes and platelets. By using a Gp1ba promoter, we developed a strategy for achieving a high level of protein expression in human megakaryocytes. The feasibility of this approach was demonstrated in iPSCs derived from two patients with Glanzmann thrombasthenia (GT), an inherited platelet disorder caused by mutations in integrin αIIbß3. Hemizygous insertion of Gp1ba promoter-driven human αIIb complementary DNA into the AAVS1 locus of iPSCs led to high αIIb messenger RNA and protein expression and correction of surface αIIbß3 in megakaryocytes. Agonist stimulation of these cells displayed recovery of integrin αIIbß3 activation. Our findings demonstrate a novel approach to studying human megakaryocyte biology as well as functional correction of the GT defect, offering a potential therapeutic strategy for patients with diseases that affect platelet function.


Induced Pluripotent Stem Cells/metabolism , Megakaryocytes/metabolism , Membrane Glycoproteins/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Thrombasthenia/genetics , Transgenes , Gene Expression , Humans , Platelet Glycoprotein GPIb-IX Complex , Promoter Regions, Genetic
6.
Blood ; 122(12): 2047-51, 2013 Sep 19.
Article En | MEDLINE | ID: mdl-23940280

Induced pluripotent stem cells (iPSCs) hold great promise for modeling human hematopoietic diseases. However, intrinsic variability in the capacities of different iPSC lines for hematopoietic development complicates comparative studies and is currently unexplained. We created and analyzed 3 separate iPSC clones from fibroblasts of 3 different normal individuals using a standardized approach that included excision of integrated reprogramming genes by Cre-Lox mediated recombination. Gene expression profiling and hematopoietic differentiation assays showed that independent lines from the same individual were generally more similar to one another than those from different individuals. However, one iPSC line (WT2.1) exhibited a distinctly different gene expression, proliferation rate, and hematopoietic developmental potential relative to all other iPSC lines. This "outlier" clone also acquired extensive copy number variations (CNVs) during reprogramming, which may be responsible for its divergent properties. Our data indicate how inherent and acquired genetic differences can influence iPSC properties, including hematopoietic potential.


Genetic Heterogeneity , Hematopoiesis/physiology , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation , Cell Line , Cluster Analysis , DNA Copy Number Variations , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells/cytology , Thrombopoiesis/genetics
7.
Blood ; 121(24): 4925-9, 2013 Jun 13.
Article En | MEDLINE | ID: mdl-23620576

Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm of young children initiated by mutations that deregulate cytokine receptor signaling. Studies of JMML are constrained by limited access to patient tissues. We generated induced pluripotent stem cells (iPSCs) from malignant cells of two JMML patients with somatic heterozygous p.E76K missense mutations in PTPN11, which encodes SHP-2, a nonreceptor tyrosine phosphatase. In vitro differentiation of JMML iPSCs produced myeloid cells with increased proliferative capacity, constitutive activation of granulocyte macrophage colony-stimulating factor (GM-CSF), and enhanced STAT5/ERK phosphorylation, similar to primary JMML cells from patients. Pharmacological inhibition of MEK kinase in iPSC-derived JMML cells reduced their GM-CSF independence, providing rationale for a potential targeted therapy. Our studies offer renewable sources of biologically relevant human cells in which to explore the pathophysiology and treatment of JMML. More generally, we illustrate the utility of iPSCs for in vitro modeling of a human malignancy.


Induced Pluripotent Stem Cells/metabolism , Leukemia, Myelomonocytic, Juvenile/metabolism , Mutation, Missense , Neoplastic Stem Cells/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cohort Studies , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Heterozygote , Humans , Induced Pluripotent Stem Cells/pathology , Leukemia, Myelomonocytic, Juvenile/genetics , Leukemia, Myelomonocytic, Juvenile/pathology , Male , Neoplastic Stem Cells/pathology , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Tumor Cells, Cultured
8.
Am J Med Genet A ; 161A(4): 792-802, 2013 Apr.
Article En | MEDLINE | ID: mdl-23427188

Disease causing mutations for heterotaxy syndrome were first identified in the X-linked laterality gene, ZIC3. Mutations typically result in males with situs ambiguus and complex congenital heart disease; however affected females and one male with isolated d-transposition of the great arteries (d-TGA) have been reported. We hypothesized that a subset of patients with heart defects common to heterotaxy but without laterality defects would have ZIC3 mutations. We also sought to estimate the prevalence of ZIC3 mutations in sporadic heterotaxy. Patients with TGA (n = 169), double outlet right ventricle (DORV; n = 89), common atrioventricular canal (CAVC; n = 41), and heterotaxy (n = 54) underwent sequencing of ZIC3 exons. We tested 90 patients with tetralogy of Fallot (TOF) to correlate genotype with phenotype. Three potentially disease-related missense mutations were detected: c.49G > T (Gly17Cys) in a female with isolated DORV, c.98C > T (Ala33Val) in a male with isolated d-TGA, and c.841C > T (His281Tyr) in a female with sporadic heterotaxy. We also identified a novel insertion (CPFP333ins) in a family with heterotaxy. All were absent in 200 control patients and the 1000 Genomes Project (n = 629). No significant mutations were found in patients with TOF. Functional studies demonstrated reduced transcriptional activity of the ZIC3 His281Tyr mutant protein. ZIC3 mutations were rarely identified in isolated DORV and d-TGA suggesting that a subset of DORV and d-TGA may fall within the spectrum of laterality defects. ZIC3 mutations were found in 3.7% of patients with sporadic heterotaxy; therefore testing should be considered in patients with heterotaxy.


Double Outlet Right Ventricle/diagnosis , Homeodomain Proteins/genetics , Mutation , Phenotype , Transcription Factors/genetics , Transposition of Great Vessels/diagnosis , Transposition of Great Vessels/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Base Sequence , Cell Line , Double Outlet Right Ventricle/genetics , Female , Gene Expression , Genes, Reporter , Genotype , Homeodomain Proteins/metabolism , Humans , Male , Mice , Molecular Sequence Data , Open Reading Frames , Pedigree , Sequence Alignment , Transcription Factors/metabolism , Trinucleotide Repeat Expansion
9.
Congenit Heart Dis ; 6(6): 592-602, 2011.
Article En | MEDLINE | ID: mdl-22010865

OBJECTIVE: Multiple genetic syndromes are caused by recurrent chromosomal microdeletions or microduplications. The increasing use of high-resolution microarrays in clinical analysis has allowed the identification of previously undetectable submicroscopic copy number variants (CNVs) associated with genetic disorders. We hypothesized that patients with congenital heart disease and additional dysmorphic features or other anomalies would be likely to harbor previously undetected CNVs, which might identify new disease loci or disease-related genes for various cardiac defects. DESIGN: Copy number analysis with single nucleotide polymorphism-based, oligonucleotide microarrays was performed on 58 patients with congenital heart disease and other dysmorphic features and/or other anomalies. The observed CNVs were validated using independent techniques and validated CNVs were further analyzed using computational algorithms and comparison with available control CNV datasets in order to assess their pathogenic potential. RESULTS: Potentially pathogenic CNVs were detected in twelve of 58 patients (20.7%), ranging in size from 240 Kb to 9.6 Mb. These CNVs contained between 1 and 55 genes, including NRP1, NTRK3, MESP1, ADAM19, and HAND1, all of which are known to participate in cardiac development. CONCLUSIONS: Genome-wide analysis in patients with congenital heart disease and additional phenotypes has identified potentially pathogenic CNVs affecting genes involved in cardiac development. The identified variant loci and the genes within them warrant further evaluation in similarly syndromic and nonsyndromic cardiac cohorts.


Abnormalities, Multiple/genetics , DNA Copy Number Variations , Gene Deletion , Gene Duplication , Heart Defects, Congenital/genetics , Child , Child, Preschool , Gene Expression Profiling/methods , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , In Situ Hybridization, Fluorescence , Infant , Infant, Newborn , Oligonucleotide Array Sequence Analysis , Philadelphia , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Young Adult
10.
Invest Ophthalmol Vis Sci ; 52(9): 6814-9, 2011 Aug 29.
Article En | MEDLINE | ID: mdl-21357393

PURPOSE: Myopia is a common vision problem affecting almost one third of the world's population. It can occur as an isolated genetic condition or be associated with other anomalies and/or syndromes. Seventeen myopia loci have been identified on various chromosomes; however, no specific gene mutations have yet been identified. METHODS: Two large multigeneration Asian Indian pedigrees (UR006 and UR077) with isolated, nonsyndromic myopia were studied, in which the condition appeared to segregate as an X-linked recessive trait (MYP1; MIM 310460). The degree of myopia was variable in both families, ranging from -6 to -23 D (mean, -8.48 D) with the majority >7.0 D. To map the myopia locus in these families, polymorphic microsatellite markers covering the entire X chromosome were used in linkage analyses performed on 42 genomic DNA samples (13 affected and 29 normal) from both families. RESULTS: Marker DXYS154, which is located within the pseudoautosomal region in distal Xq28 (PAR2; pseudoautosomal region 2), gave a combined maximum LOD score of 5.3 at = 0 under an autosomal recessive model. Other markers in the region (near but not within the PAR2 region) that showed no recombination with the phenotype in both the families included DXS1108, DXS8087, and F8i13. CONCLUSIONS: Observation of recombination in family UR006 refined the disease locus to a ∼1.25-Mb region flanked by the proximal marker DXS1073 and distal marker DXYS154. Mutation search in exons and splice junctions of candidate genes CTAG2, GAB3, MPP1, F8Bver, FUNDC2, VBP1, RAB39B, CLIC2, TMLHE, SYBL, IL9R, SPRY3, and CXYorf1 did not detect a pathogenic or predisposing variant.


Chromosomes, Human, X/genetics , Genes, Dominant/genetics , Genetic Association Studies/methods , Genetic Diseases, X-Linked/genetics , Genetic Linkage , Myopia/genetics , Pedigree , Asian People/genetics , Child , Child, Preschool , Chromosome Mapping , DNA Mutational Analysis , Female , Genetic Diseases, X-Linked/diagnosis , Haplotypes , Humans , India/epidemiology , Lod Score , Male , Microsatellite Repeats , Myopia/diagnosis
11.
Birth Defects Res A Clin Mol Teratol ; 88(1): 48-53, 2010 Jan.
Article En | MEDLINE | ID: mdl-19777601

BACKGROUND: Congenital heart defects (CHDs) are the most common, serious group of birth defects. Although relatively little is known about the causes of these conditions and there are no established prevention strategies, evidence suggests that the risk of CHDs may be related to maternal folate status as well as genetic variants in folate-related genes. Efforts to establish the relationships between these factors and CHD risk have, however, been hampered by a number of factors, including small study sample sizes and phenotypic heterogeneity. METHODS: The present study examined the relationship between nine genetic variants in eight folate-related genes and a relatively homogeneous group of left-sided cardiac defects in a cohort of 386 case-parent triads. Log-linear analyses were used to assess both maternal and inherited genetic effects. RESULTS: Analyses of the study data provided marginal evidence that the maternal MTR A2756G (unadjusted p = 0.01) and the inherited BHMT G742A (unadjusted p = 0.06) genotypes influence the risk of this subset of CHDs. However, neither association achieved significance when the false-discovery rate was controlled at 0.05. CONCLUSIONS: These results, which are based on the largest study sample and most comprehensive assessment of the relationship between left-sided cardiac defects and folate-related genes reported to date, provide little evidence that this subset of CHDs is folate related. However, even larger studies and more comprehensive evaluations of the folate pathway genes are required to fully explore the relationship between folate and left-sided cardiac defects.


Betaine-Homocysteine S-Methyltransferase/genetics , Folic Acid/metabolism , Genetic Predisposition to Disease , Genetic Variation , Hypoplastic Left Heart Syndrome/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Child , Child, Preschool , Female , Gene Expression Regulation, Developmental , Genotype , Humans , Hypoplastic Left Heart Syndrome/enzymology , Infant , Male
12.
Mol Vis ; 13: 229-36, 2007 Feb 15.
Article En | MEDLINE | ID: mdl-17327828

PURPOSE: Myopia is a common, complex disorder, and severe forms have implications for blindness due to increased risk of premature cataracts, glaucoma, retinal detachment, and macular degeneration. Autosomal dominant (AD) non-syndromic high-grade myopia has been mapped to chromosomes 18p11.31, 12q21-23, 17q21-23, 7q36, 2q37.1, 7p15.3, 15q12-13, 3q26, 4q12, 8p23, 4q22-q27, 1p36, and Xq23-q25. Here, we demonstrate evidence of linkage for AD non-syndromic high-grade myopia in a large Hutterite family to a locus on chromosome 10q21.1. METHODS: After clinical evaluation, genomic DNA was genotyped from 29 members of a Hutterite family from South Dakota (7 affected). The average refractive error of affected individuals was -7.04 diopters. Microsatellite markers were used to exclude linkage to the known AD nonsyndromic high-grade myopia loci as well as to syndromic high-grade myopia loci. A genome screen was then performed using 382 markers with an average inter-marker distance of 10 cM followed by fine-point mapping in all regions of the genome that gave positive LOD scores. SimWalk2 software was used for multipoint linkage based on AD and autosomal recessive (AR) models with a penetrance of 90% and a disease allele frequency of 0.001. RESULTS: A maximum multipoint LOD score of 3.22 was achieved under an AD model at microsatellite marker D10S1643. Fine point mapping and haplotype analysis defined a critical region of 2.67 cM on chromosome 10q21.1. Haplotype analysis demonstrated two distinct haplotypes segregating with high-grade myopia, indicative of two distinct mutations occurring in the same gene. CONCLUSIONS: We have identified a presumptive myopia locus for high-grade myopia based on linkage and haplotype analysis.


Genetic Linkage , Myopia/physiopathology , Religion , Chromosome Mapping , Female , Genes, Dominant , Genomics , Haplotypes , Humans , Lod Score , Male , Microsatellite Repeats , Myopia/genetics , Pedigree , Refraction, Ocular , Severity of Illness Index , South Dakota
13.
Genesis ; 45(3): 152-5, 2007 Mar.
Article En | MEDLINE | ID: mdl-17334989

Tyrosine hydroxylase (TH), the enzyme which catalyzes the conversion of tyrosine to L-DOPA and is rate limiting in catecholamine biosynthesis, is biochemically expressed in late stage wild-type Drosophila oocytes as well as in early embryogenesis. Null mutant alleles of TH (pale) are embryonic lethals with death occurring in the late embryonic or early larval periods of development. Staging of embryos demonstrated that inhibition of the enzymatic activity of TH by alpha-methyl-p-tyrosine (alphaMT) retards the progression of embryos primarily during the organogenesis stages of embryonic development, with lesser effects on earlier and later stages. On the other hand, time of gene action studies with a conditional temperature sensitive pale mutant (ple(ts1)) at its restrictive temperature (29 degrees C) indicate an onset of tyrosine hydroxylase gene action beginning in the oocyte stage of development. Thus, maternal as well as embryonic effects on the secretion and/or functionality of this enzyme may play roles in the early developmental program of the organism.


Drosophila melanogaster/enzymology , Embryo, Nonmammalian/enzymology , Embryonic Development , Gene Expression Regulation, Developmental , Tyrosine 3-Monooxygenase/metabolism , Animals , Drosophila melanogaster/embryology , Embryo, Nonmammalian/physiology , Female , Gene Expression Regulation, Enzymologic , Oocytes/enzymology , Tyrosine 3-Monooxygenase/genetics
14.
Pharmacol Biochem Behav ; 81(4): 849-53, 2005 Aug.
Article En | MEDLINE | ID: mdl-16051344

Tyrosine hydroxylase (TH), the enzyme which catalyzes the conversion of tyrosine to L-DOPA and is the rate limiting step in catecholamine biosynthesis, is genetically expressed during development in Drosophila. Null mutant alleles of the single copy gene which codes for this enzyme are developmentally lethal as is a conditional TH mutant at its restrictive temperature. In adult flies, inhibition of TH by alpha-methyl-p-tyrosine (alphaMT) decreases locomotor activity in a dose-dependent manner. This behavioral effect is accompanied by reductions in brain levels of dopamine, the primary CNS catecholamine in Drosophila, and can be prevented by the coadministration of L-DOPA. Similar effects are found with reserpine and at the restrictive temperature in flies with a temperature conditional mutation for TH. In agreement with published studies in mammals, inhibition of TH by alphaMT during Drosophila development results in enhanced expression of this enzyme in the progeny of surviving adults. This biochemical outcome is accompanied behaviorally by increased sensitivity to the locomotor effects of both alphaMT and reserpine, drugs which act via depletion of brain catecholamines. Since TH is the rate limiting enzyme responsible for the conversion of tyrosine to L-DOPA and L-DOPA is converted to dopamine by aromatic amino acid decarboxylase (AAAD), the results indicate that depletion of catecholamine levels in the fly embryo results in increased dopamine biosynthesis in the next generation accompanied by alterations in behavior.


Behavior, Animal/physiology , Catecholamines/physiology , Drosophila/physiology , Animals , Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Catecholamines/metabolism , Dopamine/metabolism , Dose-Response Relationship, Drug , Drosophila/genetics , Drosophila/growth & development , Enzyme Inhibitors/pharmacology , Levodopa/pharmacology , Motor Activity/drug effects , Mutation , Reserpine/pharmacology , Temperature , Tyrosine 3-Monooxygenase/antagonists & inhibitors , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , alpha-Methyltyrosine/pharmacology
15.
Mol Vis ; 11: 501-8, 2005 Jul 14.
Article En | MEDLINE | ID: mdl-16052165

PURPOSE: Retinopathy of prematurity (ROP) is a leading cause of visual loss in the pediatric population. Mutations in the Norrie disease gene (NDP) are associated with heritable retinal vascular disorders, and have been found in a small subset of patients with severe retinopathy of prematurity. Varying rates of progression to threshold disease in different races may have a genetic basis, as recent studies suggest that the incidence of NDP mutations may vary in different groups. African Americans, for example, are less likely to develop severe degrees of ROP. We screened a large cohort of ethnically diverse patients for mutations in the entire NDP. METHODS: A total of 143 subjects of different ethnic backgrounds were enrolled in the study. Fifty-four patients had severe ROP (Stage 3 or worse). Of these, 38 were threshold in at least one eye (with a mean gestational age of 26.1 weeks and mean birth weight of 788.4 g). There were 36 patients with mild or no ROP, 31 parents with no history of retinal disease or prematurity, and 22 wild type (normal) controls. There were 70 African American subjects, 55 Caucasians, and 18 of other races. Severe ROP was noted in 29 African American subjects, 17 Caucasians, and 8 of other races. Seven polymerase chain reaction primer pairs spanning the NDP were optimized for denaturing high performance liquid chromatography and direct sequencing. Three primer pairs covered the coding region, and the remaining four spanned the 3' and 5' untranslated regions (UTR). RESULTS: Six of 54 (11%) infants with severe ROP had polymorphisms in the NDP. Five of the infants were African American, and one was Caucasian. Two parents were heterozygous for the same polymorphism as their child. One parent-child pair had a single base pair (bp) insertion in the 3' UTR region. Another parent-child pair had two mutations: a 14 bp deletion in the 5' UTR region of exon 1 and a single nucleotide polymorphism in the 5' UTR region of exon 2. No coding region sequence changes were found. No polymorphisms were observed in infants with mild or no ROP, or in the wild type controls. CONCLUSIONS: Of the six sequence alterations found, five were novel nucleotide changes: One in the 5' UTR region of exon 2, and four in the 3' UTR region of exon 3. The extent of NDP polymorphisms in this large, racially diverse group of infants is moderate. NDP polymorphisms may play a role in the pathogenesis of ROP, but do not appear to be a major causative factor.


Black or African American/genetics , Eye Proteins/genetics , Nerve Tissue Proteins/genetics , Polymorphism, Genetic , Retinopathy of Prematurity/ethnology , Retinopathy of Prematurity/genetics , White People/genetics , 3' Untranslated Regions/genetics , 5' Untranslated Regions/genetics , Adult , Case-Control Studies , Cohort Studies , DNA Transposable Elements , Exons , Female , Gene Deletion , Heterozygote , Humans , Infant, Newborn , Male , Polymorphism, Single Nucleotide , Retinopathy of Prematurity/physiopathology , Severity of Illness Index
17.
Mol Vis ; 11: 97-110, 2005 Feb 02.
Article En | MEDLINE | ID: mdl-15723005

PURPOSE: Myopia is a common complex eye disorder, with implications for blindness due to increased risk of retinal detachment, chorioretinal degeneration, premature cataracts, and glaucoma. A genomic interval of 2.2 centiMorgans (cM) was defined on chromosome band 18p11.31 using 7 families diagnosed with autosomal dominant high myopia and was designated the MYP2 locus. To characterize this region, we analyzed 9 known candidate genes localized to within the 2.2 cM interval by direct sequencing. METHODS: Using public databases, a physical map of the MYP2 interval was compiled. Gene expression studies in ocular tissues using complementary DNA library screens, microarray experiments, reverse transcription techniques, and expression data identified in external databases aided in prioritizing gene selection for screening. Coding regions, intron-exon boundaries and untranslated exons of all known genes [Clusterin-like 1 (CLUL1), elastin microfibril interfacer 2 (EMILIN2), lipin 2 (LPIN2), myomesin 1 (MYOM1), myosin regulatory light chain 3 (MRCL3), myosin regulatory light chain 2 (MRLC2), transforming growth beta-induced factor (TGIFbeta), large Drosophila homolog associated protein 1 (DLGAP1), and zinc finger protein 161 homolog (ZFP161)] were sequenced using genomic DNA samples from 9 affected and 6 unaffected MYP2 pedigree members, and from 5 external controls (4 unaffected and 1 affected). Gene sequence changes were compared to known variants from public single nucleotide polymorphism (SNP) databases. RESULTS: In total, 103 polymorphisms were found by direct sequencing; 10 were missense, 14 were silent, 26 were not translated, 49 were intronic, 1 insertion, and 3 were homozygous deletions. Twenty-seven polymorphisms were novel. Novel SNPs were submitted to the public database; observed frequencies were submitted for known SNPs. No sequence alterations segregated with the disease phenotype. CONCLUSIONS: Mutation analysis of 9 encoded positional candidate genes on MYP2 loci did not identify sequence alterations associated with the disease phenotype. Further studies of MYP2 candidate genes, including analysis of putative genes predicted in silico, are underway.


Chromosomes, Human, Pair 18/genetics , DNA Mutational Analysis , Myopia, Degenerative/genetics , Gene Expression Profiling , Genes, Dominant , Genetic Testing , Genome, Human , Humans , Polymorphism, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
18.
Mol Vis ; 10: 917-22, 2004 Nov 30.
Article En | MEDLINE | ID: mdl-15592176

PURPOSE: The proteoglycans lumican and fibromodulin regulate collagen fibril assembly and show expression in ocular tissues. A recent mouse knockout study implicates lumican and fibromodulin as functional candidate genes for high myopia. Lumican maps within the chromosome 12q21-q23 autosomal dominant high grade myopia-3 (MYP3) interval, and fibromodulin maps to chromosome 1q32. We screened individuals for lumican and fibromodulin sequence alterations from the original MYP3 family, and from a second high grade myopia pedigree that showed suggestive linkage to both the MYP3 interval and to chromosome 1q32. METHODS: A total of 10 affected (average spherical refractive error was -16.13 D) and 5 unaffected individuals from the 2 families were screened by direct DNA sequencing. Six primer pairs spanning intron-exon boundaries and coding regions were designed for the 3-exon 1804 base pair (bp) lumican gene. Two primer pairs for the 2-exon 2863 bp fibromodulin gene were designed. Polymerase chain reaction products were sequenced and analyzed using standard fluorescent methods. Sequences were quality scored and aligned for polymorphic analysis. RESULTS: Direct DNA sequencing of lumican amplicons yielded the expected sequence with no evidence of polymorphism or pathologic mutation. Sequencing of fibromodulin amplicons revealed 6 polymorphisms, 1 of which was novel. One polymorphism was a silent mutation, and five were in the 3' untranslated region. No polymorphism segregated with high myopia. CONCLUSIONS: Although null and double null Lum and Fmod mouse models have been developed for high myopia, our human cohort did not show affected status association with these genes. Sequencing of the human lumican and fibromodulin genes has excluded them as candidate genes for MYP3 associated high grade myopia.


Chondroitin Sulfate Proteoglycans/genetics , Extracellular Matrix Proteins/genetics , Genetic Linkage , Keratan Sulfate/genetics , Myopia/genetics , Proteoglycans/genetics , Child , Child, Preschool , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 12/genetics , DNA Mutational Analysis , Female , Fibromodulin , Genotype , Humans , Infant , Lod Score , Lumican , Male , Pedigree , Polymerase Chain Reaction , Sequence Analysis, DNA
19.
Invest Ophthalmol Vis Sci ; 45(7): 2091-7, 2004 Jul.
Article En | MEDLINE | ID: mdl-15223781

PURPOSE: High myopia is a common complex-trait eye disorder, with implications for blindness due to increased risk of retinal detachment, macular degeneration, premature cataracts, and glaucoma. Mapping studies have identified at least four loci for nonsyndromic autosomal dominant high myopia at 18p11.31, 12q22-q23, 17q21-q23, and 7q36. The smallest haplotyped interval for these loci is that of the MYP2 locus on 18p11.31. Recently, the transforming growth beta-induced factor (TGIF) gene was reported to be a candidate gene for MYP2-associated high myopia in single-nucleotide polymorphism studies. The purpose of this study was to determine whether DNA sequence variants in the human TGIF gene are causally related to MYP2-associated high myopia. METHODS: The protein coding regions and intron-exon boundaries of the human TGIF gene were sequenced using genomic DNA samples from MYP2 individuals (affected, unaffected) and external control subjects. The TGIF model used was the April 20, 2003, human genome National Center for Biotechnology Information (NCBI) build 33, which has 10 exons and encodes eight transcript variants. Polymorphic sequence changes were compared to those in the previous report. Reverse-transcription polymerase chain reaction (RT-PCR) was performed to validate TGIF gene expression in ocular tissues. RESULTS: A total of 21 polymorphisms of TGIF were found by direct sequencing: 3 were missense, 2 were silent, 10 were not translated, 4 were intronic, and 2 were homozygous deletions. The 3 missense allelic variants were localized to exon 10 at positions 236C-->T(Pro-->Leu), 244C-->T(Pro-->Ser), and 245C-->T(Pro-->Leu). Silent mutations were observed in exon 10 at positions 177A-->G, 333C-->T. Ten polymorphisms were novel. No sequence alterations were exclusively associated with the affected disease phenotype. RT-PCR results confirmed expression of TGIF in RNA samples derived from human sclera, cornea, optic nerve, and retina. CONCLUSIONS: TGIF is a known candidate gene for MYP2-associated high myopia, based on its mapped location within the MYP2 interval. Mutation analysis of the encoded TGIF gene for MYP2 autosomal dominant high myopia did not identify sequence alterations associated with the disease phenotype. Further studies of MYP2 candidate genes are needed to determine the gene that causes of this potentially blinding disorder.


Genetic Variation , Homeodomain Proteins/genetics , Myopia/genetics , Repressor Proteins/genetics , Sequence Analysis, DNA , DNA Mutational Analysis , Humans , Polymorphism, Genetic/genetics , Reverse Transcriptase Polymerase Chain Reaction
20.
Arch Ophthalmol ; 122(6): 897-908, 2004 Jun.
Article En | MEDLINE | ID: mdl-15197065

OBJECTIVE: Bornholm eye disease (BED) consists of X-linked high myopia, high cylinder, optic nerve hypoplasia, reduced electroretinographic flicker with abnormal photopic responses, and deuteranopia. The disease maps to chromosome Xq28 and is the first designated high-grade myopia locus (MYP1). We studied a second family from Minnesota with a similar X-linked phenotype, also of Danish descent. All affected males had protanopia instead of deuteranopia. METHODS: X chromosome genotyping, fine-point mapping, and haplotype analysis of the DNA from 22 Minnesota family individuals (8 affected males and 5 carrier females) and 6 members of the original family with BED were performed. Haplotype comparisons and mutation screening of the red-green cone pigment gene array were performed on DNA from both kindreds. RESULTS: Significant maximum logarithm of odds scores of 3.38 and 3.11 at theta = 0.0 were obtained with polymorphic microsatellite markers DXS8106 and DXYS154, respectively, in the Minnesota family. Haplotype analysis defined an interval of 34.4 cM at chromosome Xq27.3-Xq28. Affected males had a red-green pigment hybrid gene consistent with protanopia. We genotyped Xq27-28 polymorphic markers of the family with BED, and narrowed the critical interval to 6.8 cM. The haplotypes of the affected individuals were different from those of the Minnesota pedigree. Bornholm eye disease-affected individuals showed the presence of a green-red hybrid gene consistent with deuteranopia. CONCLUSIONS: Because of the close geographic origin of the 2 families, we expected affected individuals to have the same haplotype in the vicinity of the same mutation. Mapping studies, however, suggested independent mutations of the same gene. The red-green and green-red hybrid genes are common X-linked color vision defects, and thus are unrelated to the high myopia and other eye abnormalities in these 2 families. CLINICAL RELEVANCE: X-linked high myopia with possible cone dysfunction has been mapped to chromosome Xq28 with intervals of 34.4 and 6.8 centimorgan for 2 families of Danish origin.


Color Vision Defects/genetics , Eye Proteins/genetics , Genetic Diseases, X-Linked/genetics , Myopia/genetics , Retinal Cone Photoreceptor Cells/chemistry , Adolescent , Adult , Age of Onset , Blotting, Southern , Child , Child, Preschool , Chromosome Mapping , Color Perception Tests , Color Vision Defects/physiopathology , DNA Mutational Analysis , Electroretinography , Female , Genetic Linkage , Genotype , Haplotypes , Humans , Male , Myopia/physiopathology , Pedigree , Polymerase Chain Reaction , Retinal Cone Photoreceptor Cells/physiology , Rod Opsins
...