Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 279: 116866, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39293244

RESUMEN

Attempts to furnish antitumor structural templates that can prevent the occurrence of drug-induced hyperuricemia spurred us to generate xanthine oxidase inhibitor-based hydroxamic acids and anilides. Specifically, the design strategy involved the insertion of febuxostat (xanthine oxidase inhibitor) as a surface recognition part of the HDAC inhibitor pharmacophore model. Investigation outcomes revealed that hydroxamic acid 4 elicited remarkable antileukemic effects mediated via HDAC isoform inhibition. Delightfully, the adduct retained xanthine oxidase inhibitory activity, though xanthine oxidase inhibition was not the underlying mechanism of its cell growth inhibitory effects. Also, compound 4 demonstrated significant in-vivo anti-hyperuricemic (PO-induced hyperuricemia model) and antitumor activity in an HL-60 xenograft mice model. Compound 4 was conjugated with poly (ethylene glycol) poly(aspartic acid) block copolymer to furnish pH-responsive nanoparticles (NPs) in pursuit of circumventing its cytotoxicity towards the normal cell lines. SEM analysis revealed that NPs had uniform size distributions, while TEM analysis ascertained the spherical shape of NPs, indicating their ability to undergo self-assembly. HDAC inhibitor 4 was liberated from the matrix due to the polymeric nanoformulation's pH-responsiveness, and the NPs demonstrated selective cancer cell targeting ability.

2.
Food Funct ; 15(18): 9368-9389, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39189385

RESUMEN

Inflammation significantly influences the degeneration of dopaminergic neurons in Parkinson's disease (PD), which is potentially intensified by associated gut dysbiosis. The therapeutic potential of probiotics, due to their antioxidant, anti-inflammatory, and gut microbiota modulatory properties, is explored herein as a means to improve gut health and influence the gut-brain-microbiota axis in the context of PD. In this study, we investigated the role and possible mechanism of Bifidobacterium animalis subsp. lactis MH-022 (B. lactis MH-022) supplementation in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Findings demonstrated that B. lactis MH-022 supplementation markedly ameliorated motor deficits, preserved dopaminergic neurons, enhanced the antioxidant capacity, and mitigated inflammation through restoring mitochondrial function. Furthermore, B. lactis MH-022 supplementation significantly altered the gut microbiota composition, augmenting the production of short-chain fatty acids and promoting the proliferation of beneficial bacterial taxa, thereby reinforcing their anti-inflammatory properties. Correlation analyses established strong associations between specific bacterial taxa and improvements in motor function, antioxidant levels, and reductions in inflammation markers. These insights emphasize the therapeutic potential of B. lactis MH-022 in modulating diverse aspects of PD, particularly highlighting its role in reducing inflammation, restoring mitochondrial function, enhancing antioxidant capacity, and reshaping the gut microbiota. This multifaceted approach underscores the probiotic's potential in reducing neuroinflammation and protecting dopaminergic neurons, thus offering a promising avenue for PD treatment.


Asunto(s)
Bifidobacterium animalis , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Inflamación , Oxidopamina , Enfermedad de Parkinson , Probióticos , Animales , Ratas , Probióticos/farmacología , Probióticos/uso terapéutico , Masculino , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Bifidobacterium animalis/fisiología , Ratas Sprague-Dawley , Disbiosis/microbiología , Disbiosis/terapia , Suplementos Dietéticos
3.
Eur J Med Chem ; 272: 116472, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38728867

RESUMEN

"A journey of mixed emotions" is a quote that best describes the progress chart of vascular endothelial growth factor receptor (VEGFR) inhibitors as cancer therapeutics in the last decade. Exhilarated with the Food and Drug Administration (FDA) approvals of numerous VEGFR inhibitors coupled with the annoyance of encountering the complications associated with their use, drug discovery enthusiasts are on their toes with an unswerving determination to enhance the rate of translation of VEGFR inhibitors from preclinical to clinical stage. The recently crafted armory of VEGFR inhibitors is a testament to their growing dominance over other antiangiogenic therapies for cancer treatment. This review perspicuously underscores the earnest attempts of the researchers to extract the antiproliferative potential of VEGFR inhibitors through the design of mechanistically diverse structural assemblages. Moreover, this review encompasses sections on structural/molecular properties and physiological functions of VEGFR, FDA-approved VEGFR inhibitors, and hurdles restricting the activity range/clinical applicability of VEGFR targeting antitumor agents. In addition, tactics to overcome the limitations of VEGFR inhibitors are discussed. A clear-cut viewpoint transmitted through this compilation can provide practical directions to push the cart of VEGFR inhibitors to advanced-stage clinical investigations in diverse malignancies.


Asunto(s)
Antineoplásicos , Neoplasias , Inhibidores de Proteínas Quinasas , Receptores de Factores de Crecimiento Endotelial Vascular , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Estructura Molecular
4.
Eur J Med Chem ; 273: 116507, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38776806

RESUMEN

Careful recruitment of the components of the HDAC inhibitory template culminated in veliparib-based anilide 8 that elicited remarkable cell growth inhibitory effects against HL-60 cell lines mediated via dual modulation of PARP [(IC50 (PARP1) = 0.02 nM) and IC50 (PARP2) = 1 nM)] and HDACs (IC50 value = 0.05, 0.147 and 0.393 µM (HDAC1, 2 and 3). Compound 8 downregulated the expression levels of signatory biomarkers of PARP and HDAC inhibition. Also, compound 8 arrested the cell cycle at the G0/G1 phase and induced autophagy. Polymer nanoformulation (mPEG-PCl copolymeric micelles loaded with compound 8) was prepared by the nanoprecipitation technique. The mPEG-PCL diblock copolymer was prepared by ring-opening polymerization method using stannous octoate as a catalyst. The morphology of the compound 8@mPEG-PCL was examined using TEM and the substance was determined to be monodispersed, spherical in form, and had an average diameter of 138 nm. The polymer nanoformulation manifested pH-sensitive behaviour as a greater release of compound 8 was observed at 6.2 pH as compared to 7.4 pH mimicking physiological settings. The aforementioned findings indicate that the acidic pH of the tumour microenvironment might stimulate the nanomedicine release which in turn can attenuate the off-target effects precedentially claimed to be associated with HDAC inhibitors.


Asunto(s)
Antineoplásicos , Bencimidazoles , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Polietilenglicoles , Humanos , Concentración de Iones de Hidrógeno , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Bencimidazoles/química , Bencimidazoles/farmacología , Bencimidazoles/síntesis química , Proliferación Celular/efectos de los fármacos , Polietilenglicoles/química , Células HL-60 , Nanopartículas/química , Estructura Molecular , Micelas , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Poliésteres/química , Poliésteres/farmacología , Poliésteres/síntesis química , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/síntesis química , Polímeros/química , Polímeros/farmacología , Polímeros/síntesis química
5.
Bioorg Chem ; 141: 106893, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37783100

RESUMEN

Diverse drug design strategies viz. molecular hybridization, substituent installation, scaffold hopping, isosteric replacement, high-throughput screening, induction and separation of chirality, structure modifications of phytoconstituents and use of structural templates have been exhaustively leveraged in the last decade to load the chemical toolbox of PARP inhibitors. Resultantly, numerous promising scaffolds have been pinpointed that in turn have led to the resuscitation of the credence to PARP inhibitors as cancer therapeutics. This review briefly presents the physiological functions of PARPs, the pharmacokinetics, and pharmacodynamics, and the interaction profiles of FDA-approved PARP inhibitors. Comprehensively covered is the section on the drug design strategies employed by drug discovery enthusiasts for furnishing PARP inhibitors. The impact of structural variations in the template of designed scaffolds on enzymatic and cellular activity (structure-activity relationship studies) has been discussed. The insights gained through the biological evaluation such as profiling of physicochemical properties andin vitroADME properties, PK assessments, and high-dose pharmacology are covered.


Asunto(s)
Neoplasias , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Relación Estructura-Actividad , Neoplasias/tratamiento farmacológico , Descubrimiento de Drogas , Diseño de Fármacos
6.
Expert Opin Drug Discov ; 18(10): 1169-1193, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37525475

RESUMEN

INTRODUCTION: PARP inhibitors block the DNA-repairing mechanism of PARP and represent a promising class of anti-cancer therapy. The last decade has witnessed FDA approvals of several PARP inhibitors, with some undergoing advanced-stage clinical investigation. Medicinal chemists have invested much effort to expand the structure pool of PARP inhibitors. Issues associated with the use of PARP inhibitors that make their standing disconcerting in the pharmaceutical sector have been addressed via the design of new structural assemblages. AREA COVERED: In this review, the authors present a detailed account of the medicinal chemistry campaigns conducted in the recent past for the construction of PARP1/PARP2 inhibitors, PARP1 biased inhibitors, and PARP targeting bifunctional inhibitors as well as PARP targeting degraders (PROTACs). Limitations associated with FDA-approved PARP inhibitors and strategies to outwit the limitations are also discussed. EXPERT OPINION: The PARP inhibitory field has been rejuvenated with numerous tractable entries in the last decade. With numerous magic bullets in hand coupled with unfolded tactics to outwit the notoriety of cancer cells developing resistance toward PARP inhibitors, the dominance of PARP inhibitors as a sagacious option of targeted therapy is highly likely to be witnessed soon.


Asunto(s)
Neoplasias , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Reparación del ADN , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
7.
Antioxidants (Basel) ; 11(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36552604

RESUMEN

Oxidative stress and gut dysbiosis have been known to precede Parkinson's disease (PD). An antioxidant-rich product, mangosteen pericarp (MP), has the ability to counterbalance excessive free radicals and the imbalanced gut microbiota composition, suggesting the MP's capacity to delay PD progression. In this study, we explored the effects of two doses of MP extract in a unilateral 6-hydroxydopamine (6-OHDA)-induced PD rat model. We revealed that the 8-week supplementation of a low dose (LMP) and a high dose of the MP extract (HMP) improved motor function, as observed in decreased contralateral rotation, improved time spent on rod, and higher dopamine binding transporter (DAT) in the substantia nigra pars compacta (SNc). The MP extract, especially the HMP, also increased antioxidant-related gene expressions, restored muscle mitochondrial function, and remodeled fecal microbiota composition, which were followed by reduced reactive oxygen species levels in brain and inflammation in plasma. Importantly, bacterial genera Sutterella, Rothia, and Aggregatibacter, which were negatively correlated with antioxidant gene expressions, decreased in the HMP group. It is imperative to note that in addition to directly acting as an antioxidant to reduce excessive free radicals, MP extract might also increase antioxidant state by rebuilding gut microbiota, thereby enhanced anti-inflammatory capacity and restored mitochondrial function to attenuate motor deficit in 6-OHDA-induced PD-like condition. All in all, MP extract is a potential candidate for auxiliary therapy for PD.

8.
Nutrients ; 14(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36364926

RESUMEN

Ascophyllum nodosum and Fucus vesiculosus both contain unique polyphenols called phlorotannins. Phlorotannins reportedly possess various pharmacological activities. A previous study reported that the activity of phlorotannin is strongly correlated with the normalization of metabolic function, and phlorotannins are extremely promising nutrients for use in the treatment of metabolic syndrome. To date, no study has explored the antihyperlipidemic effects of phlorotannins from A. nodosum and F. vesiculosus in animal models. Therefore, in the present study, we investigated the effects of phlorotannins using a rat model of high-energy diet (HED)-induced hyperlipidemia. The results showed that the rats that were fed an HED and treated with phlorotannin-rich extract from A. nodosum and F. vesiculosus had significantly lower serum fasting blood sugar (FBS), aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC), triacylglyceride (TG) and free fatty acids (FFAs) levels and hepatic TG level and had higher serum insulin, high-density lipoprotein cholesterol (HDL-C) levels and lipase activity in their fat tissues than in the case with the rats that were fed the HED alone. A histopathological analysis revealed that phlorotannin-rich extract could significantly reduce the size of adipocytes around the epididymis. In addition, the rats treated with phlorotannin-rich extract had significantly lowered interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels and increased superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities than did those in the HED group. These results suggested that the phlorotannin-rich extract stimulated lipid metabolism and may have promoted lipase activity in rats with HED-induced hyperlipidemia. Our results indicated that A. nodosum and F. vesiculosus, marine algae typically used as health foods, have strong antihyperlipidemic effects and may, therefore, be useful for preventing atherosclerosis. These algae may be incorporated into antihyperlipidemia pharmaceuticals and functional foods.


Asunto(s)
Ascophyllum , Fucus , Hiperlipidemias , Enfermedades Metabólicas , Masculino , Ratas , Animales , Ascophyllum/metabolismo , Metabolismo de los Lípidos , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/etiología , Enfermedades Metabólicas/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Inflamación/tratamiento farmacológico , Dieta , Lipasa/metabolismo , Hipolipemiantes/uso terapéutico , Colesterol/metabolismo
9.
Eur J Med Chem ; 240: 114602, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35858522

RESUMEN

A fragment recruitment process was conducted to pinpoint a suitable fragment for installation in the HDAC inhibitory template to furnish agents endowed with the potential to treat lung cancer. Resultantly, Ring C expanded deoxyvasicinone was selected as an appropriate surface recognition part that was accommodated in the HDAC three-component model. Delightfully, fused quinazolinone 6 demonstrating a magnificent anticancer profile against KRAS and EGFR mutant lung cancer cell lines (IC50 = 0.80-0.96 µM) was identified. Results of the mechanistic studies confirmed that the cell growth inhibitory effects of compound 6 stems for HDAC6 (IC50 = 12.9 nM), HDAC1 (IC50 = 49.9 nM) and HDAC3 inhibition (IC50 = 68.5 nM), respectively. Compound 6 also suppressed the colony formation ability of A549 cells, induced apoptosis, and increased autophagic flux. Key interactions of HDAC inhibitor 6 within the active site of HDAC isoforms were figured out through molecular modeling studies. Furthermore, a pH-responsive nanocarrier (Hyaluronic acid - fused quinazolinone 6 nanoparticles) was designed and assessed using a dialysis bag approach under both normal and acidic circumstances that confirmed the pH-sensitive nature of NPs. Delightfully, the nanoparticles demonstrated selective cell viability reduction potential towards the lung cancer cell lines (A549 lung cancer cell lines) and were found to be largely devoid of cell growth inhibitory effects under normal settings (L929, mouse fibroblast cells).


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Inhibidores de Histona Desacetilasas/química , Concentración de Iones de Hidrógeno , Neoplasias Pulmonares/metabolismo , Ratones , Sistema de Administración de Fármacos con Nanopartículas , Quinazolinas , Quinazolinonas/administración & dosificación , Quinazolinonas/química , Quinazolinonas/farmacología , Quinazolinonas/uso terapéutico
10.
J Cachexia Sarcopenia Muscle ; 13(1): 515-531, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34766473

RESUMEN

BACKGROUND: Age-related muscle dysfunctions are common disorders resulting in poor quality of life in the elderly. Probiotic supplementation is a potential strategy for preventing age-related sarcopenia as evidence suggests that probiotics can enhance muscle function via the gut-muscle axis. However, the effects and mechanisms of probiotics in age-related sarcopenia are currently unknown. In this study, we examined the effects of Lactobacillus casei Shirota (LcS), a probiotic previously reported to improve muscle function in young adult mice. METHODS: We administered LcS (1 × 108 or 1 × 109  CFU/mouse/day) by oral gavage to senescence-accelerated mouse prone-8 mice for 12 weeks (16- to 28-week-old). Sixteen-week-old and 28-week-old SMAP8 mice were included as non-aged and aged controls, respectively. Muscle condition was evaluated using dual-energy X-ray absorptiometry for muscle mass, holding impulse and grip strength tests for muscle strength, and oxygen consumption rate, gene expressions of mitochondrial biogenesis, and mitochondrial number assays for mitochondria function. Inflammatory cytokines were determined using enzyme-linked immunosorbent assay. Gas chromatography-mass spectrometry was utilized to measure the short-chain fatty acid levels. The gut microbiota was analysed based on the data of 16S rRNA gene sequencing of mouse stool. RESULTS: The LcS supplementation reduced age-related declines in muscle mass (>94.6%, P < 0.04), strength (>66% in holding impulse and >96.3% in grip strength, P < 0.05), and mitochondrial function (P < 0.05). The concentration of short-chain fatty acids (acetic, isobutyric, butyric, penic, and hexanoic acid) was recovered by LcS (>65.9% in the mice given high dose of LcS, P < 0.05) in the aged mice, and LcS attenuated age-related increases in inflammation (P < 0.05) and reactive oxygen species (>89.4%, P < 0.001). The high dose of LcS supplementation was also associated with distinct microbiota composition as indicated by the separation of groups in the beta-diversity analysis (P = 0.027). LcS supplementation altered predicted bacterial functions based on the gut microbiota. Apoptosis (P = 0.026), p53 signalling (P = 0.017), and non-homologous end-joining (P = 0.031) were significantly reduced, whereas DNA repair and recombination proteins (P = 0.043), RNA polymerase (P = 0.008), and aminoacyl-tRNA biosynthesis (P = 0.003) were increased. Finally, the genera enriched by high-dose LcS [linear discriminant analysis (LDA) score > 2.0] were positively correlated with healthy muscle and physiological condition (P < 0.05), while the genera enriched in aged control mice (LDA score > 2.0) were negatively associated with healthy muscle and physiological condition (P < 0.05). CONCLUSIONS: Lactobacillus casei Shirota represents an active modulator that regulates the onset and progression of age-related muscle impairment potentially via the gut-muscle axis.


Asunto(s)
Probióticos , Sarcopenia , Animales , Ratones , Músculos , Probióticos/uso terapéutico , Calidad de Vida , ARN Ribosómico 16S/genética , Sarcopenia/terapia
11.
Sci Rep ; 11(1): 19478, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593870

RESUMEN

Immunomodulation is an ability of several particular probiotics. However, it still remains unclear whether the immunomodulatory effects of specific probiotics vary for different antigen presentation models with the same antigen. To investigate this matter, six groups of BALB/c mice (n = 10) were exposed to one of two antigen presentation models: ovalbumin (OVA) by injection alone, or injection plus intranasal administration. Moreover, the mice were fed distilled water or Lactobacillus casei Shirota fermented beverage (LcSFB) at low (2.5 × 109 CFU/kg body weight) or high doses (5 × 109 CFU/kg body weight) by gavage for 8 weeks. LcSFB enhanced the proliferation of splenocytes, production of OVA-specific immunoglobulin (Ig)-G and IgA, and the ratio of T-helper (Th)-2/Th1 cytokines in mice injected with OVA. Conversely, in the mice treated with OVA by injection plus intranasal administration, LcSFB attenuated the immune responses against OVA by reducing the proliferation of splenocytes, levels of OVA-specific IgE, IgG, and IgM, and ratio of Th2/Th1 cytokines. Moreover, LcSFB increased the percentage of regulatory T cells in the injection plus intranasal administration group. Taken together, this work indicates the immunoregulatory effects of LcSFB depend on how the antigen is presented. Therefore, the use of probiotics to boost the immune system must be carefully considered.


Asunto(s)
Presentación de Antígeno , Inmunidad , Inmunomodulación , Lacticaseibacillus casei/inmunología , Ovalbúmina/inmunología , Probióticos/administración & dosificación , Animales , Formación de Anticuerpos/inmunología , Citocinas/metabolismo , Bebidas Fermentadas , Inmunofenotipificación , Activación de Linfocitos/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones Endogámicos BALB C , Bazo/inmunología , Células TH1/inmunología , Células TH1/metabolismo , Células Th2/inmunología , Células Th2/metabolismo
12.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445528

RESUMEN

Restenosis is a common vascular complication after balloon angioplasty. Catheter balloon inflation-induced transient ischemia (hypoxia) of local arterial tissues plays a pathological role in neointima formation. Phosphoglycerate kinase 1 (PGK1), an adenosine triphosphate (ATP)-generating glycolytic enzyme, has been reported to associate with cell survival and can be triggered under hypoxia. The purposes of this study were to investigate the possible role and regulation of PGK1 in vascular smooth muscle cells (VSMCs) and balloon-injured arteries under hypoxia. Neointimal hyperplasia was induced by a rat carotid artery injury model. The cellular functions and regulatory mechanisms of PGK1 in VSMCs were investigated using small interfering RNAs (siRNAs), chemical inhibitors, or anaerobic cultivation. Our data indicated that protein expression of PGK1 can be rapidly induced at a very early stage after balloon angioplasty, and the silencing PGK1-induced low cellular energy circumstance resulted in the suppressions of VSMC proliferation and migration. Moreover, the experimental results demonstrated that blockage of PDGF receptor-ß (PDGFRB) or its downstream pathway, the phosphoinositide 3-kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) axis, effectively reduced hypoxia-induced factor-1 (HIF-1α) and PGK1 expressions in VSMCs. In vivo study evidenced that PGK1 knockdown significantly reduced neointima hyperplasia. PGK1 was expressed at the early stage of neointimal formation, and suppressing PGK1 has a potential beneficial effect for preventing restenosis.


Asunto(s)
Angioplastia de Balón/efectos adversos , Traumatismos de las Arterias Carótidas/terapia , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Neointima/patología , Fosfoglicerato Quinasa/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Masculino , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/etiología , Neointima/metabolismo , Fosfoglicerato Quinasa/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal
13.
Artículo en Inglés | MEDLINE | ID: mdl-34306155

RESUMEN

Balloon angioplasty-induced neointimal hyperplasia remains a clinical problem that must be resolved. The bioactivities of the Crossostephium chinense extract (CCE) have demonstrated potential in preventing the progression of restenosis. The present study evaluated whether CCE can suppress balloon angioplasty-induced neointima formation and elucidated its possible pharmacological mechanisms. A rat model of carotid arterial balloon angioplasty was established to evaluate the inhibitory effect of CCEs on neointimal hyperplasia. Two cell lines, A10 vascular smooth muscle cells (VSMCs) and RAW264.7 macrophages, were used to investigate the potential regulatory activities and pharmacological mechanisms of CCEs in cell proliferation and migration and in inflammation. Our in vitro results indicated that CCE3, the ethanolic extract of C. chinense, exerted the strongest growth inhibitory and antimigratory effects on VSMCs. CCE3 blocked the activation of focal adhesion kinase, platelet-derived growth factor receptor-ß (PDGFRB), and its downstream molecules (AKT and mTOR) and reduced the expression of matrix metalloproteinase-2. In addition, our findings revealed that CCE3 significantly increased the expression of miRNA-132, an inhibitory regulator of inflammation and restenosis, and suppressed the expression of inflammation-related molecules (inducible nitric oxide synthase, cyclooxygenase-2, interleukin- (IL-) 1ß, and IL-6). Our in vivo study results indicated that balloon injury-induced neointimal hyperplasia was inhibited by CCE3. CCE3 could reduce neointima formation in balloon-injured arteries, and this effect may be partially attributed to the CCE3-induced suppression of PDGFRB-mediated downstream pathways and inflammation-related molecules.

14.
Nutrients ; 13(4)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805289

RESUMEN

Probiotics are reported to improve gastrointestinal (GI) function via regulating gut microbiota (GM). However, exactly how probiotics influence GM and GI function in elders is poorly characterized. Therefore, in this study, we assessed the effect of the probiotic Lacticaseibacillus paracasei PS23 (LPPS23) on the GM and GI function of aged mice. There were four groups of senescence-accelerated mouse prone-8 (SAMP8) mice (n = 4): a non-treated control group, a saline control group, a low dose LPPS23 group (1 × 108 colony-forming unit (CFU)/mouse/day), and a high dose LPPS23 group (1 × 109 CFU/mouse/day). Non-treated mice were euthanized at 16 weeks old, and others were euthanized at 28 weeks old. The next-generation sequencing results revealed that LPPS23 enriched Lactobacillus and Candidatus_Saccharimonas, while the abundance of Lachnospiraceae_UCG_001 decreased in aged mice given LPPS23. The abundance of Lactobacillus negatively correlated with the abundance of Erysipelotrichaceae. Moreover, LPPS23 improved the GI function of aged mice due to the longer intestine length, lower intestinal permeability, and higher phagocytosis in LPPS23-treated mice. The ELISA results showed that LPPS23 attenuated the alterations of pro-inflammatory factors and immunoglobulins. The abundance of LPPS23-enriched Lactobacillus was positively correlated with healthy GI function, while Lachnospiraceae_UCG_001, which was repressed by LPPS23, was negatively correlated with a healthy GI function in the aged mice according to Spearman's correlation analysis. Taken together, LPPS23 can effectively modulate GM composition and improve GI function in aged SAMP8 mice.


Asunto(s)
Envejecimiento , Microbioma Gastrointestinal , Lactobacillus , Probióticos , Animales , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Inmunoglobulinas/sangre , Ratones , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
15.
BMC Cardiovasc Disord ; 21(1): 77, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33557763

RESUMEN

BACKGROUND: Patients who receive percutaneous coronary intervention (PCI) have different chances of developing in-stent restenosis (ISR). To date, no predictable biomarker can be applied in the clinic. MicroRNAs (miRNAs or miRs) play critical roles in transcription regulation, and their circulating levels were reported to have potential as clinical biomarkers. METHODS: In total, 93 coronary stent-implanted patients without pregnancy, liver or renal dysfunction, malignancy, hemophilia, or autoimmune diseases were recruited in this clinical study. All recruited participants were divided into an ISR group (n = 45) and a non-ISR group (n = 48) based on their restenotic status as confirmed by cardiologists at the first follow-up visit (6 months after surgery). Blood samples of all participants were harvested to measure circulating levels of miRNA candidates (miR-132, miR-142-5p, miR-15b, miR-24-2, and miR-424) to evaluate whether these circulating miRNAs can be applied as predictive biomarkers of ISR. RESULTS: Our data indicated that circulating levels of miR-142-5p were significantly higher in the ISR population, and results from the receiver operating characteristic (ROC) curve analysis also demonstrated superior discriminatory ability of miR-142-5p in predicting patients' restenotic status. In addition, circulating levels of miR-15b, miR-24-2, and miR-424 had differential expressions in participants with diabetes, hyperlipidemia, and hypertension, respectively. CONCLUSIONS: The current study revealed that the circulating level of miR-142-5p has potential application as a clinical biomarker for predicting the development of ISR in stent-implanted patients.


Asunto(s)
MicroARN Circulante/sangre , Enfermedad de la Arteria Coronaria/terapia , Reestenosis Coronaria/sangre , MicroARNs/sangre , Intervención Coronaria Percutánea/instrumentación , Stents , Anciano , Biomarcadores/sangre , Estudios de Casos y Controles , MicroARN Circulante/genética , Reestenosis Coronaria/diagnóstico , Reestenosis Coronaria/etiología , Femenino , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Intervención Coronaria Percutánea/efectos adversos , Valor Predictivo de las Pruebas , Factores de Riesgo , Taiwán , Resultado del Tratamiento , Regulación hacia Arriba
16.
Chem Biol Interact ; 332: 109304, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33164868

RESUMEN

Cisplatin-based chemotherapy is a common first-line regimen for treating non-small cell lung cancer (NSCLC). However, drug resistance is still a major problem. The purposes of this study were to evaluate whether sclareol can reverse cisplatin resistance and to investigate its possible mechanisms. A549 cells, the human NSCLC cells with inherent cisplatin resistance, were used to investigate synergistic effect of sclareol with cisplatin in cell proliferation and migration as well as its regulatory mechanisms in expression of excision repair cross-complementation group 1 (ERCC1), a cisplatin resistance-associated molecule. Nude mice bearing subcutaneous A549 tumors were applied to investigate synergistic activity of sclareol in anti-tumor. As comparing to the cisplatin alone group, the treatment of cisplatin combined with sclareol significantly suppressed survival rate and cell migration of A549 cells. Besides, sclareol also exhibited suppression in ERCC1 expression by inhibiting AKT-GSK3ß-AP1/Snail and JNK-AP1 pathways. Furthermore, the experimental data from in vivo study also demonstrated that the combination group of cisplatin and sclareol showed the greatest anti-tumor activity, whose effect could be partially attributed to sclareol-mediated decrease in intratumoral level of ERCC1 protein. Accordingly, sclareol has potential as an adjuvant for the treatment in NSCLC patients with cisplatin resistance.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Cisplatino/farmacología , Diterpenos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína de Replicación C/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Células A549 , Animales , Movimiento Celular/efectos de los fármacos , Diterpenos/química , Sinergismo Farmacológico , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Ratones , Modelos Biológicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Transcripción AP-1/metabolismo
17.
Curr Pharm Des ; 26(39): 4970-4981, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32867640

RESUMEN

Metabolic syndrome is an aggregation of conditions and associated with an increased risk of developing diabetes, obesity and cardiovascular diseases (CVD). Edible mushrooms are widely consumed in many countries and are valuable components of the diet because of their attractive taste, aroma, and nutritional value. Medicinal mushrooms are higher fungi with additional nutraceutical attributes having low-fat content and a transisomer of unsaturated fatty acids along with high fiber content, biologically active compounds such as polysaccharides or polysaccharide ß-glucans, alkaloids, steroids, polyphenols and terpenoids. In vitro experiments, animal models, and even human studies have demonstrated not only fresh edible mushroom but also mushroom extract that has great therapeutic applications in human health as they possess many properties such as antiobesity, cardioprotective and anti-diabetic effect. They are considered as the unmatched source of healthy foods and drugs. The focus of this report was to provide a concise and complete review of the novel medicinal properties of fresh or dry mushroom and extracts, fruiting body or mycelium and its extracts, fiber, polysaccharides, beta-glucan, triterpenes, fucoidan, ergothioneine from edible mushrooms that may help to prevent or treat metabolic syndrome and associated diseases.


Asunto(s)
Agaricales , Síndrome Metabólico , Animales , Suplementos Dietéticos , Ácidos Grasos Insaturados , Humanos , Síndrome Metabólico/tratamiento farmacológico , Valor Nutritivo
18.
Nutrients ; 12(8)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752178

RESUMEN

A triathlon is an extremely high-intensity exercise and a challenge for physiological adaptation. A triathlete's microbiome might be modulated by diet, age, medical treatments, lifestyle, and exercise, thereby maintaining aerobiosis and optimum health and performance. Probiotics, prebiotics, and synbiotics have been reported to have health-promoting activities (e.g., immunoregulation and cancer prevention). However, few studies have addressed how probiotics affect the microbiota of athletes and how this translates into functional activities. In our previous study, we found that Lactobacillus plantarum PS128 could ameliorate inflammation and oxidative stress, with improved exercise performance. Thus, here we investigate how the microbiota of triathletes are altered by L. plantarum PS128 supplementation, not only for exercise performance but also for possible physiological adaptation. The triathletes were assigned to two groups: an L. plantarum 128 supplement group (LG, 3 × 1010 colony-forming units (CFU)/day) and a placebo group (PG). Both groups continued with their regular exercise training for the next 4 weeks. The endurance performance, body composition, biochemistries, blood cells, microbiota, and associated metabolites were further investigated. PS128 significantly increased the athletes' endurance, by about 130% as compared to the PG group, but there was no significant difference in maximal oxygen consumption (VO2max) and composition between groups. The PS128 supplementation (LG) modulated the athlete's microbiota with both significant decreases (Anaerotruncus, Caproiciproducens, Coprobacillus, Desulfovibrio, Dielma, Family_XIII, Holdemania, and Oxalobacter) and increases (Akkermansia, Bifidobacterium, Butyricimonas, and Lactobacillus), and the LG showed lower diversity when compared to the PG. Also, the short-chain fatty acids (SCFAs; acetate, propionate, and butyrate) of the LG were significantly higher than the PG, which might be a result of a modulation of the associated microbiota. In conclusion, PS128 supplementation was associated with an improvement on endurance running performance through microbiota modulation and related metabolites, but not in maximal oxygen uptake.


Asunto(s)
Adaptación Fisiológica/fisiología , Microbioma Gastrointestinal/fisiología , Lactobacillus plantarum/metabolismo , Adulto , Bifidobacterium , Composición Corporal , Dieta , Ejercicio Físico , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Humanos , Inflamación , Lactobacillus , Estrés Oxidativo , Consumo de Oxígeno , Prebióticos , Probióticos , Carrera , Adulto Joven
19.
Aging (Albany NY) ; 11(19): 8085-8102, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31584878

RESUMEN

The relationship between aging and restenosis are unclear. The purposes of this study were to investigate the possible pathological role and mechanism of aging on formation of restenosis. Our data indicated that cell proliferation and migration of the oxidative stress-induced senescent vascular smooth muscle cells were obviously desensitized to stimulation by platelet-derived growth factor (PDGF)-BB, which may have been caused by suppression of promoter activity, transcription, translation, and activation levels of PDGF receptor (PDGFR)-ß. The analyzed data obtained from the binding array of transcription factors (TFs) showed that binding levels of eighteen TFs on the PDGFR-ß promoter region (-523 to -1) were significantly lower in senescent cells compared to those of non-senescent cells. Among these TFs, the bioinformatics prediction suggested that the putative binding sites of ten TFs were found in this promoter region. Of these, transcriptional levels of seven TFs were markedly reduced in senescent cells. The clinical data showed that the proportion of restenosis was relatively lower in the older group than that in the younger group. Our study results suggested that a PDGFR-ß-mediated pathway was suppressed in aging cells, and our clinical data showed that age and the vascular status were slightly negatively correlated in overall participants.


Asunto(s)
Becaplermina/metabolismo , Movimiento Celular/efectos de los fármacos , Senescencia Celular/fisiología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/efectos de los fármacos , Estrés Oxidativo , Animales , Línea Celular , Movimiento Celular/fisiología , Cobalto/toxicidad , Biología Computacional , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Unión Proteica , Ratas
20.
Int J Mol Sci ; 19(3)2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29522490

RESUMEN

The purpose of this study was to investigate the inhibitory activities of ethanolic extracts from Antrodia cinnamomea (EEAC) on lung cancer. Cell proliferation and cell cycle distribution were analyzed using (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay and flow cytometry, respectively. Wound-healing assay, Western blotting, and a murine tumor model were separately used to examine cell migration, protein expression, and tumor repression. Our results showed that EEAC induced cell cycle arrest at the G0/G1 phase resulting decreased cell viability in A549 cells. Moreover, EEAC up-regulated the growth-suppressing proteins, adenosine 5'-monophosphate-activated protein kinase (AMPK), p21 and p27, but down-regulated the growth-promoting proteins, protein kinase B (Akt), mammalian tarfet of rapamycin (mTOR), extracellular signal-regulating kinase 1/2 (ERK1/2), retinoblastoma protein (Rb), cyclin E, and cyclin D1. EEAC also inhibited A549 cell migration and reduced expression of gelatinases. In addition, our data showed that tumor growth was suppressed after treatment with EEAC in a murine allograft tumor model. Some bioactive compounds from EEAC, such as cordycepin and zhankuic acid A, were demonstrated to reduce the protein expressions of matrix metalloproteinase (MMP)-9 and cyclin D1 in A549 cells. Furthermore, EEAC enhanced chemosensitivity of A549 to paclitaxel by reducing the protein levels of caveolin-1. Our data suggests that EEAC has the potential to be an adjuvant medicine for the treatment of lung cancer.


Asunto(s)
Antineoplásicos/farmacología , Antrodia/química , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Células A549 , Aloinjertos , Animales , Antineoplásicos/química , Modelos Animales de Enfermedad , Etanol/química , Cuerpos Fructíferos de los Hongos/química , Humanos , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA