Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1182330, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342564

RESUMEN

Magnetotactic bacteria (MTB) within the Nitrospirota phylum play important roles in biogeochemical cycles due to their outstanding ability to biomineralize large amounts of magnetite magnetosomes and intracellular sulfur globules. For several decades, Nitrospirota MTB were believed to only live in freshwater or low-salinity environments. While this group have recently been found in marine sediments, their physiological features and ecological roles have remained unclear. In this study, we combine electron microscopy with genomics to characterize a novel population of Nitrospirota MTB in a coral reef area of the South China Sea. Both phylogenetic and genomic analyses revealed it as representative of a novel genus, named as Candidatus Magnetocorallium paracelense XS-1. The cells of XS-1 are small and vibrioid-shaped, and have bundled chains of bullet-shaped magnetite magnetosomes, sulfur globules, and cytoplasmic vacuole-like structures. Genomic analysis revealed that XS-1 has the potential to respire sulfate and nitrate, and utilize the Wood-Ljungdahl pathway for carbon fixation. XS-1 has versatile metabolic traits that make it different from freshwater Nitrospirota MTB, including Pta-ackA pathway, anaerobic sulfite reduction, and thiosulfate disproportionation. XS-1 also encodes both the cbb3-type and the aa3-type cytochrome c oxidases, which may function as respiratory energy-transducing enzymes under high oxygen conditions and anaerobic or microaerophilic conditions, respectively. XS-1 has multiple copies of circadian related genes in response to variability in coral reef habitat. Our results implied that XS-1 has a remarkable plasticity to adapt the environment and can play a beneficial role in coral reef ecosystems.

2.
Front Microbiol ; 13: 887136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756025

RESUMEN

Magnetotactic bacteria (MTB) have been found in a wide variety of marine habitats, ranging from intertidal sediments to deep-sea seamounts. Deep-sea hydrothermal fields are rich in metal sulfides, which are suitable areas for the growth of MTB. However, MTB in hydrothermal fields have never been reported. Here, the presence of MTB in sediments from the Tangyin hydrothermal field was analyzed by 16S rRNA gene amplicon analysis, metagenomics, and transmission electron microscopy. Sequencing 16S rRNA gene yielded a total of 709 MTB sequences belonging to 20 OTUs, affiliated with Desulfobacterota, Alphaproteobacteria, and Nitrospirae. Three shapes of magnetofossil were identified by transmission electron microscopy: elongated-prismatic, bullet-shaped, and cuboctahedron. All of these structures were composed of Fe3O4. A total of 121 sequences were found to be homologous to the published MTB magnetosome-function-related genes, and relevant domains were identified. Further analysis revealed that diverse MTB are present in the Tangyin hydrothermal field, and that multicellular magnetotactic prokaryote (MMPs) might be the dominant MTB.

3.
Microorganisms ; 10(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35630369

RESUMEN

Multicellular magnetotactic prokaryotes (MMPs) are a unique group of magnetotactic bacteria that are composed of 10-100 individual cells and show coordinated swimming along magnetic field lines. MMPs produce nanometer-sized magnetite (Fe3O4) and/or greigite (Fe3S4) crystals-termed magnetosomes. Two types of magnetosome gene cluster (MGC) that regulate biomineralization of magnetite and greigite have been found. Here, we describe a dominant spherical MMP (sMMP) species collected from the intertidal sediments of Jinsha Bay, in the South China Sea. The sMMPs were 4.78 ± 0.67 µm in diameter, comprised 14-40 cells helical symmetrically, and contained bullet-shaped magnetite and irregularly shaped greigite magnetosomes. Two sets of MGCs, one putatively related to magnetite biomineralization and the other to greigite biomineralization, were identified in the genome of the sMMP, and two sets of paralogous proteins (Mam and Mad) that may function separately and independently in magnetosome biomineralization were found. Phylogenetic analysis indicated that the sMMPs were affiliated with Deltaproteobacteria. This is the first direct report of two types of magnetosomes and two sets of MGCs being detected in the same sMMP. The study provides new insights into the mechanism of biomineralization of magnetosomes in MMPs, and the evolutionary origin of MGCs.

4.
FEMS Microbiol Lett ; 366(22)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31855240

RESUMEN

Magnetotactic bacteria (MTB) are a group of microorganisms that have the ability to synthesize intracellular magnetic crystals (magnetosomes). They prefer microaerobic or anaerobic aquatic sediments. Thus, there is growing interest in their ecological roles in various habitats. In this study we found co-occurrence of a large rod-shaped deltaproteobacterial magnetotactic bacterium (tentatively named LR-1) in the sediment of a brackish lagoon with algal bloom. Electron microscopy observations showed that they were ovoid to slightly curved rods having a mean length of 6.3 ± 1.1 µm and a mean width of 4.1 ± 0.4 µm. Each cell had a single polar flagellum. They contained hundreds of bullet-shaped intracellular magnetite magnetosomes. Phylogenetic analysis revealed that they were most closely related to Desulfamplus magnetovallimortis strain BW-1, and belonged to the Deltaproteobacteria. Our findings indicate that LR-1 may be a new species of MTB. We propose that deltaproteobacterial MTB may play an important role in iron cycling and so may represent a reservoir of iron, and be an indicator species for monitoring algal blooms in such eutrophic ecosystems. These observations provide new clues to the cultivation of magnetotactic Deltaproteobacteria and the control of algal blooms, although further studies are needed.


Asunto(s)
Deltaproteobacteria/clasificación , Deltaproteobacteria/aislamiento & purificación , Eutrofización , Sedimentos Geológicos/microbiología , Magnetismo , Filogenia , Taxia , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Deltaproteobacteria/genética , Deltaproteobacteria/ultraestructura , Flagelos/ultraestructura , Magnetosomas/ultraestructura , Microscopía Electrónica , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
5.
mSystems ; 4(5)2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31662428

RESUMEN

The evolution of microbial magnetoreception (or magnetotaxis) is of great interest in the fields of microbiology, evolutionary biology, biophysics, geomicrobiology, and geochemistry. Current genomic data from magnetotactic bacteria (MTB), the only prokaryotes known to be capable of sensing the Earth's geomagnetic field, suggests an ancient origin of magnetotaxis in the domain Bacteria Vertical inheritance, followed by multiple independent magnetosome gene cluster loss, is considered to be one of the major forces that drove the evolution of magnetotaxis at or above the class or phylum level, although the evolutionary trajectories at lower taxonomic ranks (e.g., within the class level) remain largely unstudied. Here we report the isolation, cultivation, and sequencing of a novel magnetotactic spirillum belonging to the genus Terasakiella (Terasakiella sp. strain SH-1) within the class Alphaproteobacteria The complete genome sequence of Terasakiella sp. strain SH-1 revealed an unexpected duplication event of magnetosome genes within the mamAB operon, a group of genes essential for magnetosome biomineralization and magnetotaxis. Intriguingly, further comparative genomic analysis suggests that the duplication of mamAB genes is a common feature in the genomes of alphaproteobacterial MTB. Taken together, with the additional finding that gene duplication appears to have also occurred in some magnetotactic members of the Deltaproteobacteria, our results indicate that gene duplication plays an important role in the evolution of magnetotaxis in the Alphaproteobacteria and perhaps the domain Bacteria IMPORTANCE A diversity of organisms can sense the geomagnetic field for the purpose of navigation. Magnetotactic bacteria are the most primitive magnetism-sensing organisms known thus far and represent an excellent model system for the study of the origin, evolution, and mechanism of microbial magnetoreception (or magnetotaxis). The present study is the first report focused on magnetosome gene cluster duplication in the Alphaproteobacteria, which suggests the important role of gene duplication in the evolution of magnetotaxis in the Alphaproteobacteria and perhaps the domain Bacteria A novel scenario for the evolution of magnetotaxis in the Alphaproteobacteria is proposed and may provide new insights into evolution of magnetoreception of higher species.

6.
Front Microbiol ; 9: 2135, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271390

RESUMEN

While multicellular magnetotactic prokaryotes (MMPs) are ubiquitous in marine environments, the diversity of MMPs in sediments of coral reef ecosystems has rarely been reported. In this study, we made an investigation on the diversity and characteristics of MMPs in sediments at 11 stations in coral reef habitats of the Paracel Islands. The results showed that MMPs were present at nine stations, with spherical mulberry-like MMPs (s-MMPs) found at all stations and ellipsoidal pineapple-like MMPs (e-MMPs) found at seven stations. The maximum abundance of MMPs was 6 ind./cm3. Phylogenetic analysis revealed the presence of one e-MMP species and five s-MMP species including two species of a new genus. The results indicate that coral reef habitats of the Paracel Islands have a high diversity of MMPs that bio-mineralize multiple intracellular chains of iron crystals and play important role in iron cycling in such oligotrophic environment. These observations provide new perspective of the diversity of MMPs in general and expand knowledge of the occurrence of MMPs in coral reef habitats.

7.
Environ Microbiol Rep ; 10(4): 475-484, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29687636

RESUMEN

There are two genetically distinct morphological types of multicellular magnetotactic prokaryotes (MMPs) in the intertidal zone of Lake Yuehu (China): ellipsoidal MMPs (eMMPs) and spherical MMPs (sMMPs). We studied the vertical distribution of both types of MMPs in the sediment at Lake Yuehu during 1 year. Both types of MMPs were observed at sediment depths ranging from 1 to 34 cm, depending on the seasons. The eMMPs distributed at depths of 2-34 cm during spring, 1-11 cm during summer, 2-21 cm during autumn and 9-32 cm during winter. The eMMP species Candidatus Magnetananas rongchenensis, with magnetite magnetosomes, dominated at all distribution depths. These results suggested that Ca. M. rongchenensis migrated vertically during four seasons. The vertical profiles of oxidation-reduction potential (ORP) in Lake Yuehu changed seasonally, and these changes coincided with the seasonal distribution of MMPs, suggesting that the ORP affected the vertical distribution of MMPs. In addition, high concentrations of ammonium and silicate were associated with low abundances of MMPs.


Asunto(s)
Deltaproteobacteria/fisiología , Sedimentos Geológicos/microbiología , Lagos/microbiología , Estaciones del Año , Compuestos de Amonio/química , China , Deltaproteobacteria/clasificación , Deltaproteobacteria/citología , Deltaproteobacteria/genética , Óxido Ferrosoférrico , Sedimentos Geológicos/química , Lagos/química , Locomoción , Magnetosomas/fisiología , Oxidación-Reducción , Silicatos/química
8.
Sci Rep ; 7(1): 17964, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29269894

RESUMEN

Seamounts are undersea mountains rising abruptly from the sea floor and interacting dynamically with underwater currents. They represent unique biological habitats with various microbial community structures. Certain seamount bacteria form conspicuous extracellular iron oxide structures, including encrusted stalks, flattened bifurcating tubes, and filamentous sheaths. To extend our knowledge of seamount ecosystems, we performed an integrated study on population structure and the occurrence of magnetotactic bacteria (MTB) that synthesize intracellular iron oxide nanocrystals in sediments of a seamount in the Mariana volcanic arc. We found Proteobacteria dominant at 13 of 14 stations, but ranked second in abundance to members of the phylum Firmicutes at the deep-water station located on a steep slope facing the Mariana-Yap Trench. Live MTB dwell in biogenic sediments from all 14 stations ranging in depth from 238 to 2,023 m. Some magnetotactic cocci possess the most complex flagellar apparatus yet reported; 19 flagella are arranged in a 3:4:5:4:3 array within a flagellar bundle. Phylogenetic analysis of 16S rRNA gene sequences identified 16 novel species of MTB specific to this seamount. Together the results obtained indicate that geographic properties of the seamount stations are important in shaping the bacterial community structure and the MTB composition.


Asunto(s)
Sedimentos Geológicos/microbiología , Magnetospirillum/metabolismo , Bacterias/genética , Bacterias/metabolismo , Magnetosomas , Magnetospirillum/genética , Microbiota/genética , Micronesia , Filogenia , ARN Ribosómico 16S/genética
9.
Anaerobe ; 42: 152-161, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27756619

RESUMEN

To evaluate the toxicity of smokeless tobacco products (STPs) on oral bacteria, seven smokeless tobacco aqueous extracts (STAEs) from major brands of STPs and three tobacco-specific N-nitrosamines (TSNAs) were used in a growth and viability test against 38 oral bacterial species or subspecies. All seven STAEs showed concentration-dependent effects on the growth and viability of tested oral bacteria under anaerobic culture conditions, although there were strain-to-strain variations. In the presence of 1 mg/ml STAEs, the growth of 4 strains decreased over 0.32-2.14 log10 fold, while 14 strains demonstrated enhanced growth of 0.3-1.76 log10 fold, and the growth of 21 strains was not significantly affected. In the presence of 10 mg/ml STAEs, the growth of 17 strains was inhibited 0.3-2.11 log10 fold, 18 strains showed enhanced growth of 0.3-0.97 log10 fold, and 4 strains were not significantly affected. In the presence of 50 mg/ml STAEs, the growth of 32 strains was inhibited 0.3-2.96 log10 fold, 8 strains showed enhanced growth of 0.3-1.0 log10 fold, and 2 strains were not significantly affected. All seven STAEs could promote the growth of 4 bacterial strains, including Eubacterium nodatum, Peptostreptococcus micros, Streptococcus anginosus, and Streptococcus constellatus. Exposure to STAEs modulated the viability of some bacterial strains, with 21.1-66.5% decrease for 4 strains at 1 mg/ml, 20.3-85.7% decrease for 10 strains at 10 mg/ml, 20.0-93.3% decrease for 27 strains at 50 mg/ml, and no significant effect for 11 strains at up to 50 mg/ml. STAEs from snuffs inhibited more tested bacterial strains than those from snus indicating that the snuffs may be more toxic to the oral bacteria than snus. For TSNAs, cell growth and viability of 34 tested strains were not significantly affected at up to 100 µg/ml; while the growth of P. micros was enhanced 0.31-0.54 log10 fold; the growth of Veillonella parvula was repressed 0.33-0.36 log10 fold; and the cell viabilities of 2 strains decreased 56.6-69.9%. The results demonstrate that STAEs affected the growth of some types of oral bacteria, which may affect the healthy ecological balance of oral bacteria in humans. On the other hand, TSNAs did not significantly affect the growth of the oral bacteria.


Asunto(s)
Mezclas Complejas/farmacología , Microbiota/efectos de los fármacos , Boca/microbiología , Nitrosaminas/farmacología , Tabaco sin Humo/análisis , Medios de Cultivo/química , Eubacterium/efectos de los fármacos , Eubacterium/aislamiento & purificación , Eubacterium/fisiología , Humanos , Concentración de Iones de Hidrógeno , Viabilidad Microbiana/efectos de los fármacos , Microbiota/fisiología , Peptostreptococcus/efectos de los fármacos , Peptostreptococcus/aislamiento & purificación , Peptostreptococcus/fisiología , Especificidad de la Especie , Streptococcus anginosus/efectos de los fármacos , Streptococcus anginosus/aislamiento & purificación , Streptococcus anginosus/fisiología , Streptococcus constellatus/efectos de los fármacos , Streptococcus constellatus/aislamiento & purificación , Streptococcus constellatus/fisiología , Veillonella/efectos de los fármacos , Veillonella/aislamiento & purificación , Veillonella/fisiología
10.
Environ Microbiol Rep ; 8(2): 239-49, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26742990

RESUMEN

Magnetotactic bacteria (MTB) are distributed ubiquitously in sediments from coastal environments to the deep sea. The Pacific Manganese Nodule Province contains numerous polymetallic nodules mainly composed of manganese, iron, cobalt, copper and nickel. In the present study we used Illumina MiSeq sequencing technology to assess the communities of putative MTB in deep sea surface sediments at nine stations in the east Pacific Manganese Nodule Province. A total of 402 sequence reads from MTB were classified into six operational taxonomic units (OTUs). Among these, OTU113 and OTU759 were affiliated with the genus Magnetospira, OTU2224 and OTU2794 were affiliated with the genus Magnetococcus and Magnetovibrio, respectively, OTU3017 had no known genus affiliation, and OTU2556 was most similar to Candidatus Magnetananas. Interestingly, OTU759 was widely distributed, occurring at all study sites. Magnetism measurements revealed that all sediments were dominated by low coercivity, non-interacting single domain magnetic minerals. Transmission electron microscopy confirmed that the magnetic minerals were magnetosomes. Our data suggest that diverse putative MTB are widely distributed in deep sea surface sediments from the east Pacific Manganese Nodule Province.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , Sedimentos Geológicos/microbiología , Magnetosomas/ultraestructura , Bacterias/genética , Bacterias/ultraestructura , Sedimentos Geológicos/química , Locomoción , Magnetismo , Microscopía Electrónica de Transmisión , Minerales/análisis , Océano Pacífico , Análisis de Secuencia de ADN
11.
Environ Microbiol Rep ; 8(2): 218-26, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26711721

RESUMEN

Multicellular magnetotactic prokaryotes (MMPs) are a peculiar group of magnetotactic bacteria, each comprising approximately 10-100 cells of the same phylotype. Two morphotypes of MMP have been identified, including several species of globally distributed spherical mulberry-like MMPs (s-MMPs), and two species of ellipsoidal pineapple-like MMPs (e-MMPs) from China (Qingdao and Rongcheng cities). We recently collected e-MMPs from Mediterranean Sea sediments (Six-Fours-les-Plages) and Drummond Island, in the South China Sea. Phylogenetic analysis revealed that the MMPs from Six-Fours-les-Plages and the previously reported e-MMP Candidatus Magnetananas rongchenensis have 98.5% sequence identity and are the same species, while the MMPs from Drummond Island appear to be a novel species, having > 7.1% sequence divergence from the most closely related e-MMP, Candidatus Magnetananas tsingtaoensis. Identification of the novel species expands the distribution of e-MMPs to Tropical Zone. Comparison of nine physical and chemical parameters revealed that sand grain size and the content of inorganic nitrogen (nitrate, ammonium and nitrite) in the sediments from Rongcheng City and Six-Fours-les-Plages were similar, and lower than found for sediments from the other two sampling sites. The results of the study reveal broad diversity and wide distribution of e-MMPs.


Asunto(s)
Deltaproteobacteria/aislamiento & purificación , Deltaproteobacteria/fisiología , Sedimentos Geológicos/microbiología , Locomoción , Magnetismo , China , Deltaproteobacteria/clasificación , Deltaproteobacteria/efectos de la radiación , Región Mediterránea , Filogeografía
12.
Environ Microbiol Rep ; 7(3): 538-46, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25727488

RESUMEN

Two morphotypes (spherical and ellipsoidal) of multicellular magnetotactic prokaryotes (MMPs) have been reported from the sediments of Lake Yuehu, China. Here, their temporal distributions and their relationships with biogeochemical parameters are studied. Samples were collected at approximately 2-week intervals from two sites (A and B) during the period September 2012 to December 2013. The abundance of MMPs was high in summer and autumn, but low in winter and spring. Furthermore, the peaks in the numbers of the two types of MMPs were sequential, with the highest concentration of the spherical MMPs occurring prior to that of the ellipsoidal MMPs. This may be related to different optimal growth temperatures for the two types. Although the two types of MMP coexisted at both sites, their numbers were different; at most times, spherical MMPs dominated at site A, whereas ellipsoidal MMPs dominated at site B. Geochemical analysis revealed that the environmental conditions at site A varied more than at site B. Compared with the widely distributed spherical MMPs, ellipsoidal MMPs seemed to prefer more stable habitats. This is the first report of the temporal distribution of ellipsoidal MMPs in sediments, suggesting that their environmental adaptations differ from those of spherical MMPs.


Asunto(s)
Bacterias/citología , Bacterias/crecimiento & desarrollo , Sedimentos Geológicos/microbiología , Lagos/microbiología , Carga Bacteriana , Fenómenos Fisiológicos Bacterianos , China , Locomoción , Magnetismo , Microscopía , Estaciones del Año , Factores de Tiempo
13.
J Ind Microbiol Biotechnol ; 42(5): 745-57, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25720844

RESUMEN

We previously demonstrated the effects of azo dyes and their reduction metabolites on bacterial cell growth and cell viability. In this report, the effects of Orange II and Sudan III on gene expression profiling in Staphylococcus aureus ATCC BAA 1556 were analyzed using microarray and quantitative RT-PCR technology. Upon exposure to 6 µg/ml Orange II for 18 h, 21 genes were found to be differently expressed. Among them, 8 and 13 genes were up- and down-regulated, respectively. Most proteins encoded by these differentially expressed genes involve stress response caused by drug metabolism, oxidation, and alkaline shock indicating that S. aureus could adapt to Orange II exposure through a balance between up and down regulated gene expression. Whereas, after exposure to 6 µg/ml Sudan III for 18 h, 57 genes were differentially expressed. In which, 51 genes were up-regulated and 6 were down-regulated. Most proteins encoded by these differentially expressed genes involve in cell wall/membrane biogenesis and biosynthesis, nutrient uptake, transport and metabolite, and stress response, suggesting that Sudan III damages the bacterial cell wall or/and membrane due to binding of the dye. Further analysis indicated that all differentially expressed genes encoded membrane proteins were up-regulated and most of them serve as transporters. The result suggested that these genes might contribute to survival, persistence and growth in the presence of Sudan III. Only one gene msrA, which plays an important role in oxidative stress resistance, was found to be down-regulated after exposure to both Orange II and Sudan III. The present results suggested that both these two azo dyes can cause stress in S. aureus and the response of the bacterium to the stress is mainly related to characteristics of the azo dyes.


Asunto(s)
Compuestos Azo/farmacología , Bencenosulfonatos/farmacología , Colorantes/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Regulación hacia Abajo/efectos de los fármacos , Perfilación de la Expresión Génica , Genes Bacterianos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Staphylococcus aureus/citología , Staphylococcus aureus/metabolismo , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos
14.
Environ Microbiol ; 17(3): 637-47, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24725306

RESUMEN

Two morphotypes of multicellular magnetotactic prokaryotes (MMPs) have been identified: spherical (several species) and ellipsoidal (previously one species). Here, we report novel ellipsoidal MMPs that are ∼ 10 × 8 µm in size, and composed of about 86 cells arranged in six to eight interlaced circles. Each MMP was composed of cells that synthesized either bullet-shaped magnetite magnetosomes alone, or both bullet-shaped magnetite and rectangular greigite magnetosomes. They showed north-seeking magnetotaxis, ping-pong motility and negative phototaxis at a velocity up to 300 µm s(-1) . During reproduction, they divided along either their long- or short-body axes. For genetic analysis, we sorted the ellipsoidal MMPs with micromanipulation and amplified their genomes using multiple displacement amplification. We sequenced the 16S rRNA gene and found 6.9% sequence divergence from that of ellipsoidal MMPs, Candidatus Magnetananas tsingtaoensis and > 8.3% divergence from those of spherical MMPs. Therefore, the novel MMPs belong to different species and genus compared with the currently known ellipsoidal and spherical MMPs respectively. The novel MMPs display a morphological cell differentiation, implying a potential division of labour. These findings provide new insights into the diversity of MMPs in general, and contribute to our understanding of the evolution of multicellularity among prokaryotes.


Asunto(s)
Deltaproteobacteria/clasificación , Lagos/microbiología , Magnetosomas/fisiología , Secuencia de Bases , China , Deltaproteobacteria/genética , Óxido Ferrosoférrico , Genes de ARNr/genética , Hierro , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sulfuros
15.
Res Microbiol ; 165(7): 481-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25086260

RESUMEN

Magnetotactic bacteria (MTB) are a group of Gram-negative bacteria synthesizing magnetic crystals that allow them aligning along magnetic field lines. They have diverse morphologies including cocci, rods, vibrio, spirilla, and multicellular magnetotactic prokaryotes (MMPs). MMPs are composed of 10-57 cells with peritrichous flagella on their outer surfaces and swim as an entire unit. Here, we describe a species of spherical MMPs isolated from intertidal sediments of Lake Yuehu (Yellow Sea, China). They were mainly found in the subsurface layer of gray-black sediments. Microscopy revealed that these spherical MMPs were 5.6 ± 0.9 µm in diameter and composed of approximately 16-32 ovoid cells with a helical arrangement and peritrichous flagellation. High-resolution transmission electron microscopy showed that the MMPs contained both bullet-shaped magnetite and irregular greigite magnetosomes that were arranged in chains or clusters. These MMPs displayed typical escape motility and negative phototaxis. The 16S rRNA genes of micromanipulation-purified spherical MMPs were cloned and sequenced. Phylogenetic analysis revealed that the MMP species was affiliated with Deltaproteobacteria and displayed >2.8% sequence divergence with respect to previously reported MMPs. This is the first phylogenetic identification of a spherical MMP that produces both magnetite and greigite magnetosomes.


Asunto(s)
Cristalización , Deltaproteobacteria/clasificación , Deltaproteobacteria/metabolismo , Óxido Ferrosoférrico/metabolismo , Sedimentos Geológicos/microbiología , Hierro/metabolismo , Sulfuros/metabolismo , China , Análisis por Conglomerados , Citoplasma/ultraestructura , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Deltaproteobacteria/genética , Deltaproteobacteria/aislamiento & purificación , Locomoción , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
BMC Microbiol ; 14: 222, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25138641

RESUMEN

BACKGROUND: Due to potential interference of nanoparticles on bacterial quantification, there is a challenge to develop a fast, accurate and reproducible method for bacterial quantification. Currently various bacterial quantification methods are used by researchers performing nanoparticles study, but there has been no efficacy evaluation of these methods. Here we study interference of nanoparticles on three most commonly used conventional bacterial quantification methods, including colony counting to determine the colony-forming units (CFU), spectrophotometer method of optical density (OD) measurement, and flow cytometry (FCM). RESULTS: Three oxide nanoparticles including ZnO, TiO2, and SiO2 and four bacterial species including Salmonella enterica serovar Newport, Staphylococcus epidermidis, Enterococcus faecalis, and Escherichia coli were included in the test. Results showed that there is no apparent interference of the oxide nanoparticles on quantifications of all four bacterial species by FCM measurement; CFU counting is time consuming, less accurate and not suitable for automation; and the spectrophotometer method using OD measurement was the most unreliable method to quantify and detect the bacteria in the presence of the nanoparticles. CONCLUSION: In summary, FCM measurement proved to be the best method, which is suitable for rapid, accurate and automatic detection of bacteria in the presence of the nanoparticles.


Asunto(s)
Antibacterianos/toxicidad , Bacterias/efectos de los fármacos , Carga Bacteriana/métodos , Metales/toxicidad , Nanopartículas/toxicidad , Óxidos/toxicidad , Recuento de Colonia Microbiana/métodos , Citometría de Flujo/métodos , Espectrofotometría/métodos
17.
J Med Microbiol ; 63(Pt 5): 735-741, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24586033

RESUMEN

We isolated a total of 653 strains from 64 community environmental samples in Massachusetts, USA. Among these isolates, 9.65 % (63 strains) were benzalkonium chloride (BC)-resistant staphylococci. All BC-resistant strains were collected from surfaces upon which antibacterial wipes or antibacterial sprays containing 0.02-0.12 % BC had frequently been used in the fitness centres. However, isolates from surfaces upon which antibacterial wipes or antibacterial sprays had not been used were all sensitive to BC. All BC-resistant strains were also resistant to erythromycin, penicillin and ampicillin. In addition, 51 strains showed resistance to cetyltrimethylammonium bromide (CTAB), 15 strains showed resistance to chloramphenicol, 12 strains showed resistance to ciprofloxacin and four strains showed resistance to meticillin. Resistance gene analysis demonstrated that 41 strains contained qacA/B, 30 strains had qacC, 25 strains contained qacG, 16 strains had qacH and eight strains contained qacJ. These data indicate that application of BC is associated with environmental staphylococcal antimicrobial resistance.


Asunto(s)
Compuestos de Benzalconio/farmacología , Desinfectantes/farmacología , Farmacorresistencia Bacteriana , Microbiología Ambiental , Staphylococcus/efectos de los fármacos , Staphylococcus/aislamiento & purificación , Antibacterianos/farmacología , Genes Bacterianos , Humanos , Massachusetts , Pruebas de Sensibilidad Microbiana , Reacción en Cadena de la Polimerasa , Staphylococcus/genética
18.
Environ Microbiol ; 16(2): 525-44, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23841906

RESUMEN

Magnetotactic bacteria (MTB) are capable of synthesizing intracellular organelles, the magnetosomes, that are membrane-bounded magnetite or greigite crystals arranged in chains. Although MTB are widely spread in various ecosystems, few axenic cultures are available, and only freshwater Magnetospirillum spp. have been genetically analysed. Here, we present the complete genome sequence of a marine magnetotactic spirillum, Magnetospira sp. QH-2. The high number of repeats and transposable elements account for the differences in QH-2 genome structure compared with other relatives. Gene cluster synteny and gene correlation analyses indicate that the insertion of the magnetosome island in the QH-2 genome occurred after divergence between freshwater and marine magnetospirilla. The presence of a sodium-quinone reductase, sodium transporters and other functional genes are evidence of the adaptive evolution of Magnetospira sp. QH-2 to the marine ecosystem. Genes well conserved among freshwater magnetospirilla for nitrogen fixation and assimilatory nitrate respiration are absent from the QH-2 genome. Unlike freshwater Magnetospirillum spp., marine Magnetospira sp. QH-2 neither has TonB and TonB-dependent receptors nor does it grow on trace amounts of iron. Taken together, our results show a distinct, adaptive evolution of Magnetospira sp. QH-2 to marine sediments in comparison with its closely related freshwater counterparts.


Asunto(s)
Evolución Biológica , Ecosistema , Genoma Bacteriano , Magnetospirillum/genética , Adaptación Biológica/genética , Proteínas Bacterianas/genética , Hibridación Genómica Comparativa , Elementos Transponibles de ADN , ADN Bacteriano/genética , Islas Genómicas , Magnetosomas/genética , Magnetospirillum/fisiología , Familia de Multigenes , Filogenia , Quinona Reductasas/genética , Agua de Mar/microbiología , Simportadores/genética , Sintenía
19.
Appl Environ Microbiol ; 79(9): 3137-40, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23455351

RESUMEN

Novel large, rod-shaped magnetotactic bacteria (MTB) were discovered in intertidal sediments of the Yellow Sea, China. They biomineralized more than 300 rectangular magnetite magnetosomes per cell. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that they are affiliated with the Alphaproteobacteria and may represent a new genus of MTB.


Asunto(s)
Alphaproteobacteria/clasificación , Óxido Ferrosoférrico/química , Magnetosomas/química , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Alphaproteobacteria/ultraestructura , Secuencia de Bases , China , ADN Bacteriano/análisis , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Sedimentos Geológicos/microbiología , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
20.
Environ Microbiol ; 15(5): 1595-605, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23279048

RESUMEN

A combination of microscopic, molecular and biogeochemical methods was used to study the structure, phylogenetics and vertical distribution of spherical multicellular magnetotactic prokaryotes (MMPs) of intertidal sediments in the Yellow Sea. These MMPs were 5.5 µm in diameter and composed of approximately 15-30 cells. They synthesized bullet-shaped magnetites in chains or clusters. Phylogenetic analysis of 16S rRNA gene sequences suggested that these MMPs represent a novel species affiliated to the Deltaproteobacteria. To study their vertical distribution and the relationship to geochemical parameters, sediment cores were collected after the redox potential was measured in situ. The sediments were composed of yellow, grey and black layers from the surface to depth. The spherical MMPs were concentrated near the grey-black layer transition at a depth of 8-12 cm, while coccoid-shaped magnetotactic bacteria near the yellow-grey layer transition at a depth of 3-5 cm. The intertidal MMPs showed a deeper distribution at more reduced environments than coccoid-shaped magnetotactic bacteria, and MMPs in lagoon sediments. Additionally the MMPs were concentrated significantly in layers with high proportion of fine sand and total organic carbon, rich in leachable iron but poor in nitrate. These results show an adaptation of spherical MMPs to the peculiar intertidal sediment habitat.


Asunto(s)
Deltaproteobacteria/fisiología , Ecosistema , Sedimentos Geológicos/microbiología , Adaptación Fisiológica , Deltaproteobacteria/clasificación , Deltaproteobacteria/genética , Deltaproteobacteria/ultraestructura , Magnetismo , Filogenia , Células Procariotas/clasificación , Células Procariotas/fisiología , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...