Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 384: 129318, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37315624

RESUMEN

N,N-dimethylformamide is a toxic chemical solvent, which widely exists in industrial wastewater. Nevertheless, the relevant methods merely achieved non-hazardous treatment of N,N-dimethylformamide. In this study, one efficient N,N-dimethylformamide degrading strain was isolated and developed for pollutant removal coupling with poly(3-hydroxybutyrate) (PHB) accumulation. The functional host was characterized as Paracoccus sp. PXZ, which could consume N,N-dimethylformamide as the nutrient substrate for cell reproduction. Whole-genome sequencing analysis confirmed that PXZ simultaneously possesses the essential genes for poly(3-hydroxybutyrate) synthesis. Subsequently, the approaches of nutrient supplementation and various physicochemical variables to strengthen poly(3-hydroxybutyrate) production were investigated. The optimal biopolymer concentration was 2.74 g·L-1 with a poly(3-hydroxybutyrate) proportion of 61%, showing a yield of 0.29 g-PHB·g-1-fructose. Furthermore, N,N-dimethylformamide served as the special nitrogen matter that could realize a similar poly(3-hydroxybutyrate) accumulation. This study provided a fermentation technology coupling with N,N-dimethylformamide degradation, offering a new strategy for resource utilization of specific pollutants and wastewater treatment.


Asunto(s)
Contaminantes Ambientales , Paracoccus , Ácido 3-Hidroxibutírico/metabolismo , Dimetilformamida/metabolismo , Paracoccus/metabolismo , Contaminantes Ambientales/metabolismo , Poliésteres/metabolismo , Hidroxibutiratos/metabolismo
2.
Int J Biol Macromol ; 226: 1523-1532, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36455823

RESUMEN

Open poly(3-hydroxybutyrate) (PHB) fermentation is of great potential, and batch PHB synthesis with piperazine as the nitrogen switch has been realized. However, it is vital to explore the feasibility of continuous PHB fermentation with piperazine-contained wastewater remediation collaboratively. Here, an aerobic membrane bioreactor was constructed for consecutive PHB synthesis. The removal efficiency of piperazine decreased from 100 % to 82.6 % after three cycles, meanwhile, the PHB concentration was 0.39 g·L-1, 0.18 g·L-1, and undetected for each cycle. Microbial community analysis showed that Proteobacteria, Actinobacteriota, and Bacteroidota were the main contaminating microbes. Furthermore, three metagenome-assembled genomes related to Flavobacterium collumnare, Herbaspirillum aquaticum, and Microbacterium enclense were identified as the dominant contaminating strains. These microbes obtained nitrogenous substrates transformed by Paracoccus sp. TOH, such as amino acids and dissolved organic matter, as nutrient for accumulation. This study verified the practicability of coupling continuous PHB synthesis with industrial wastewater treatment and revealed the derivation mechanism of contaminating species, which could provide a reference for the targeted nitrogen release gene knockout of functional PHB fermentation chassis.


Asunto(s)
Hidroxibutiratos , Aguas Residuales , Ácido 3-Hidroxibutírico , Fermentación , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Nitrógeno/metabolismo , Piperazinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...