Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Phys Chem Chem Phys ; 25(16): 11673-11683, 2023 Apr 26.
Article En | MEDLINE | ID: mdl-37051874

The rational design of high-performance catalysts for oxygen reduction reactions (ORRs) is of great importance for large-scale applications in the field of proton-exchange membrane fuel cells and the green synthesis of H2O2. The effect of spin states of paramagnetic metal ions on the selectivity of ORRs is significant for single-atom catalysts (SACs). In this work, via spin-polarization density functional theory (DFT) calculations, we systematically investigated the popular paramagnetic metal-nitrogen graphene (M-N4-C, M = Mn, Fe, and Co) SACs to mainly focus on the correlation of spin states and catalytic performance (e.g. activity and selectivity). Both thermodynamically and kinetically, it was found that Co-N4-C (S = 1/2) has excellent 2e- oxygen reduction performance (hydrogen peroxide production) with an ultralow overpotential of 0.03 V, and the hydrogenation of OOH* is the rate-determining step (RDS) with an energy barrier of 1.20 eV. The 4e- ORR tends to occur along the OOH dissociation pathway (O* + OH*) on Co-N4-C (S = 3/2), in which OOH* decomposition is the RDS with an energy barrier of 1.01 eV. It is proved that the spin magnetic moment is the key factor to regulate the ORR property via multi-angle electronic analysis. The spin states of catalysts play a crucial role in the activity and selectivity of ORRs mainly by manipulating the bond strength between OOH and catalysts. This will provide new insights for the rational design of ORR catalysts with magnetic metals.

2.
J Colloid Interface Sci ; 617: 752-763, 2022 Jul.
Article En | MEDLINE | ID: mdl-35316788

Direct electrosynthesis of hydrogen peroxide (H2O2) from H2 and O2 is a promising alternative to currently industrial Riedl-Pfleiderer route. Utilizing a combination of density functional theory (DFT) and ab-initio-molecular dynamic simulation (AIMD), we presented an effective computational framework to identify the cooperative role of surface atoms(e.g. O, N and S) and aqueous media on catalytic performance of single-atom catalysts (SACs) supported Nb2C MXenes. Computational results shown that both Ni/Nb2CN2 and Co/Nb2CS2 have low overpotentials of 0.17 V and 0.20 V, and the barrier of 0.89 eV and 0.67 eV for 2e- ORR under gas phase, respectively, while in aqueous phase, hydrogen bond framework on the surface promotes the transfer of proton, resulting in the lower 2e- ORR overpotential (0.05 V) in Co/Nb2CS2 and lower barrier (almost 0.01 eV) for rate-determining step (RDS) in Ni/Nb2CN2. Electronically, we found that the less-electronegativity N and S relative to O more benefit to mediate the activation degree of O2 on SACs and thereby improve catalytic selectivity. Thus, it is concluded that both surface atom and aqueous medium synergistically promote catalytic property for H2O2 synthesis.


Hydrogen Peroxide , Catalysis , Hydrogen Bonding , Hydrogen Peroxide/chemistry
3.
J Colloid Interface Sci ; 599: 58-67, 2021 Oct.
Article En | MEDLINE | ID: mdl-33933797

The electrochemical synthesis of hydrogen peroxide (H2O2) provides a greener and more efficient method compared with classic catalysts containing toxic metals. Herein, we used first-principles density functional theory (DFT) calculations to investigate 174 different single-atom catalysts with graphyne substrates, and conducted a three-step screening strategy to identify the optimal noble metal-free single atom catalyst. It is found that a single Ni atom loaded on γ-graphyne with carbon vacancies (Ni@V-γ-GY) displayed remarkable thermodynamic stability, excellent selectivity, and high activity with an ultralow overpotential of 0.03 V. Furthermore, based on ab-initio molecular dynamic and DFT calculations under the H2O solvent, it was revealed that the catalytic performance for H2O2 synthesis in aqueous phase was much better than that in gas phase condition, shedding light on the hydrogen bond network being beneficial to accelerate the transfer of protons for H2O2 synthesis.

...