Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
BMC Plant Biol ; 24(1): 528, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38862893

BACKGROUND: BRVIS RADIX (BRX) family is a small gene family with the highly conserved plant-specific BRX domains, which plays important roles in plant development and response to abiotic stress. Although BRX protein has been studied in other plants, the biological function of cotton BRX-like (BRXL) gene family is still elusive. RESULT: In this study, a total of 36 BRXL genes were identified in four cotton species. Whole genome or segmental duplications played the main role in the expansion of GhBRXL gene family during evolutionary process in cotton. These BRXL genes were clustered into 2 groups, α and ß, in which structural and functional conservation within same groups but divergence among different groups were found. Promoter analysis indicated that cis-elements were associated with the phytohormone regulatory networks and the response to abiotic stress. Transcriptomic analysis indicated that GhBRXL2A/2D and GhBRXL5A/5D were up/down-regulated in response to the different stress. Silencing of GhBRXL5A gene via virus-induced gene silencing (VIGS) improved salt tolerance in cotton plants. Furthermore, yeast two hybrid analysis suggested homotypic and heterotypic interactions between GhBRXL1A and GhBRXL5D. CONCLUSIONS: Overall, these results provide useful and valuable information for understanding the evolution of cotton GhBRXL genes and their functions in salt stress.


Gene Expression Regulation, Plant , Gossypium , Multigene Family , Plant Proteins , Salt Stress , Gossypium/genetics , Gossypium/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Stress/genetics , Salt Tolerance/genetics , Phylogeny , Genes, Plant , Gene Expression Profiling
2.
J Colloid Interface Sci ; 673: 216-227, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38875788

Cerium-based adsorbents possessed unique advantages of valence variability and abundant oxygen vacancies in hexavalent chromium (Cr(VI)) adsorption, but high cost and unstable properties restricted their application in Cr(VI) contained wastewater treatment. Herein, a series of bimetallic adsorbents with different cerium/iron ratios (CeFe@C) were prepared by adding inexpensive Fe into Ce-based adsorbents (Ce@C), and the effect of Fe doping on adsorption properties of Ce@C for Cr(VI) was investigated thoroughly. Compared with pristine Ce@C, CeFe@C exhibited excellent removal performance for Cr(VI), and the improved maximum adsorption capacity reached 75.11 mg/g at 25℃. Benefiting from Fe doping, CeFe@C had good regeneration property, with only 25 % decrease after five adsorption-desorption cycles. Contents of trivalent cerium (Ce(III)) and oxygen vacancies (Ov) in bimetallic adsorbents were positively correlated with divalent iron (Fe(II)) doping, indicating that the formation of Ce(III) and surface defects on Ce@C could be effectively regulated by Fe doping. Density functional theory (DFT) calculation results further proved that the doped Fe enhanced the electron transfer effectively and lowered the energy barriers of Cr(VI) adsorption onto Ce@C surface, strengthening the reduction and complexation to Cr(VI). This study provides new insights for improving the Cr(VI) removal performance by modified Ce-based adsorbents, and further promotes the utilization potentiality of low-cost and low-toxicity Ce-based adsorbents in Cr(VI)-containing wastewater treatment.

3.
Cells ; 13(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38786060

Cells defend against oxidative stress by enhancing antioxidant capacity, including stress-activated metabolic alterations, but the underlying intracellular signaling mechanisms remain unclear. This paper reports that immunoglobulin superfamily containing leucine-rich repeat (ISLR) functions as a redox sensor that responds to reactive oxygen species (ROS) stimulation and modulates the antioxidant capacity by suppressing pyruvate kinase isozyme M2 (PKM2) activity. Following oxidative stress, ISLR perceives ROS stimulation through its cysteine residue 19, and rapidly degrades in the autophagy-lysosome pathway. The downregulated ISLR enhances the antioxidant capacity by promoting the tetramerization of PKM2, and then enhancing the pyruvate kinase activity, PKM2-mediated glycolysis is crucial to the ISLR-mediated antioxidant capacity. In addition, our results demonstrated that, in triple-negative breast cancer, cisplatin treatment reduced the level of ISLR, and PKM2 inhibition sensitizes tumors to cisplatin by enhancing ROS production; and argued that PKM2 inhibition can synergize with cisplatin to limit tumor growth. Our results demonstrate a molecular mechanism by which cells respond to oxidative stress and modulate the redox balance.


Antioxidants , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Humans , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Antioxidants/metabolism , Antioxidants/pharmacology , Oxidative Stress/drug effects , Animals , Cisplatin/pharmacology , Female , Membrane Proteins/metabolism , Thyroid Hormones/metabolism , Thyroid Hormone-Binding Proteins , Mice , Pyruvate Kinase/metabolism , Glycolysis/drug effects , Autophagy/drug effects , Carrier Proteins/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/enzymology
4.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38673934

The calmodulin-binding protein 60 (CBP60) family is a gene family unique to plants, and its members play a crucial role in plant defense responses to pathogens and growth and development. Considering that cotton is the primary source of natural cotton textile fiber, the functional study of its CBP60 gene family members is critical. In this research, we successfully identified 162 CBP60 members from the genomes of 21 species. Of these, 72 members were found in four cotton species, divided into four clades. To understand the function of GhCBP60B in cotton in depth, we conducted a detailed analysis of its sequence, structure, cis-acting elements, and expression patterns. Research results show that GhCBP60B is located in the nucleus and plays a crucial role in cotton growth and development and response to salt and drought stress. After using VIGS (virus-induced gene silencing) technology to conduct gene silencing experiments, we found that the plants silenced by GhCBP60B showed dwarf plants and shortened stem nodes, and the expression of related immune genes also changed. In further abiotic stress treatment experiments, we found that GhCBP60B-silenced plants were more sensitive to drought and salt stress, and their POD (peroxidase) activity was also significantly reduced. These results imply the vital role of GhCBP60B in cotton, especially in regulating plant responses to drought and salt stress. This study systematically analyzed CBP60 gene family members through bioinformatics methods and explored in depth the biological function of GhCBP60B in cotton. These research results lay a solid foundation for the future use of the GhCBP60B gene to improve cotton plant type and its drought and salt resistance.


Calmodulin-Binding Proteins , Gene Expression Regulation, Plant , Gossypium , Stress, Physiological , Calmodulin-Binding Proteins/genetics , Calmodulin-Binding Proteins/metabolism , Droughts , Genome, Plant , Gossypium/genetics , Gossypium/metabolism , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
5.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38673820

C-TERMINALLY ENCODED PEPTIDEs (CEPs) are a class of peptide hormones that have been shown in previous studies to play an important role in regulating the development and response to abiotic stress in model plants. However, their role in cotton is not well understood. In this study, we identified 54, 59, 34, and 35 CEP genes from Gossypium hirsutum (2n = 4x = 52, AD1), G. barbadense (AD2), G. arboreum (2n = 2X = 26, A2), and G. raimondii (2n = 2X = 26, D5), respectively. Sequence alignment and phylogenetic analyses indicate that cotton CEP proteins can be categorized into two subgroups based on the differentiation of their CEP domain. Chromosomal distribution and collinearity analyses show that most of the cotton CEP genes are situated in gene clusters, suggesting that segmental duplication may be a critical factor in CEP gene expansion. Expression pattern analyses showed that cotton CEP genes are widely expressed throughout the plant, with some genes exhibiting specific expression patterns. Ectopic expression of GhCEP46-D05 in Arabidopsis led to a significant reduction in both root length and seed size, resulting in a dwarf phenotype. Similarly, overexpression of GhCEP46-D05 in cotton resulted in reduced internode length and plant height. These findings provide a foundation for further investigation into the function of cotton CEP genes and their potential role in cotton breeding.


Gene Expression Regulation, Plant , Gossypium , Multigene Family , Phylogeny , Plant Proteins , Gossypium/genetics , Gossypium/growth & development , Gossypium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Chromosomes, Plant/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Genome-Wide Association Study , Peptide Hormones/genetics , Peptide Hormones/metabolism , Plant Development/genetics , Peptides/genetics , Peptides/metabolism , Chromosome Mapping , Genes, Plant
6.
ACS Appl Mater Interfaces ; 16(13): 16678-16686, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38503721

Photodetectors with a broad-band response range are widely used in many fields and are regarded as pivotal components of the modern miniaturized electronics industry. However, commercial broad-band photodetectors composed of traditional bulk semiconductor materials are still limited by complex preparation techniques, high costs, and a lack of mechanical strength and flexibility, which are difficult to satisfy the increasing demand for flexible and wearable optoelectronics. Therefore, researchers have been devoted to finding new strategies to obtain flexible, stable, and high-performance broad-band photodetectors. In this work, a novel self-assembled BiGaSeAs composite superlattice-structured nanowire was developed with a simple chemical vapor deposition method for easy fabrication. After the device assembling, the photodetector showed outstanding performance in terms of obvious Ion/Ioff (13.9), broad-band photoresponse (365-940 nm), excellent responsivity (1007.67 A/W), high detectivity (9.38 × 109 Jones), and rapid response (21 and 23 ms). The formation of microheterojunctions among various materials inside the nanowires also contributed to their extended broad-spectrum response and outstanding detection ability. These results indicate that the BiGaSeAs nanowires have potential applications in the field of flexible and wearable electronics.

7.
Adv Sci (Weinh) ; 11(13): e2309293, 2024 Apr.
Article En | MEDLINE | ID: mdl-38258489

The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built-in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H2 production rate reached 48.5 mmol g-1 h-1 under visible light after loading Ni2+ on the heterojunction surface, which is 97 times higher than that of pure Zn0.67Cd0.33S nanospheres. Furthermore, the H2 production rate can reach 77.3 mmol g-1 h-1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p-n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials-by-design of high-performance heterojunctions.

8.
BMC Plant Biol ; 23(1): 599, 2023 Nov 29.
Article En | MEDLINE | ID: mdl-38017370

BACKGROUND: Phospholipases As (PLAs) are acyl hydrolases that catalyze the release of free fatty acids in phospholipids and play multiple functions in plant growth and development. The three families of PLAs are: PLA1, PLA2 (sPLA), and patatin-related PLA (pPLA). The diverse functions that pPLAs play in the growth and development of a broad range of plants have been demonstrated by prior studies. METHODS: Genome-wide analysis of the pPLA gene family and screening of genes for expression verification and gene silencing verification were conducted. Additionally, pollen vitality testing, analysis of the pollen expression pattern, and the detection of POD, SOD, CAT, MDA, and H2O2 were performed. RESULT: In this study, 294 pPLAs were identified from 13 plant species, including 46 GhpPLAs that were divided into three subfamilies (I-III). Expression patterns showed that the majority of GhpPLAs were preferentially expressed in the petal, pistil, anther, and ovule, among other reproductive organs. Particularly, GhpPLA23 and GhpPLA44, were found to be potentially important for the reproductive development of G. hirsutum. Functional validation was demonstrated by VIGS which showed that reduced expression levels of GhpPLA23 and GhpPLA44 in the silenced plants were associated with a decrease in pollen activity. Moreover, a substantial shift in ROS and ROS scavengers and a considerable increase in POD, CAT, SOD, and other physiological parameters was found out in these silenced plants. Our results provide plausibility to the hypothesis that GhpPLA23 and GhpPLA44 had a major developmental impact on cotton reproductive systems. These results also suggest that pPLAs are important for G. hirsutum's reproductive development and suggest that they could be employed as potential genes for haploid induction. CONCLUSIONS: The findings of the present research indicate that pPLA genes are essential for the development of floral organs and sperm cells in cotton. Consequently, this family might be important for the reproductive development of cotton and possibly for inducing the plant develop haploid progeny.


Hydrogen Peroxide , Seeds , Hydrogen Peroxide/metabolism , Reactive Oxygen Species/metabolism , Seeds/metabolism , Plants/metabolism , Genitalia/metabolism , Superoxide Dismutase/metabolism , Gossypium/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny
9.
Int J Biol Macromol ; 253(Pt 8): 127645, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37879575

GEX1 (gamete expressed 1) proteins are critical membrane proteins conserved among flowering plants that are involved in the nuclear fusion and embryonic development. Herein, we identified the 32 GEX1 proteins from representative land plants. In cotton, GEX1 genes expressed in various tissues across all stages of the life cycle, especially in pollen. Subcellular localization indicated the position of GhGEX1 protein was localized in the endoplasmic reticulum. Experimental research has demonstrated that GhGEX1 has the potential to improve the partial abortion phenotype in Arabidopsis. CRISPR/Cas9-mediated knockout of GhGEX1 exhibited the seed abortion. Paraffin section of the ovule revealed that the polar nuclear fusion of ghgex1 plants remains at a standstill when the wild type has developed into a normal embryo. Comparative transcriptome analysis showed that the DEGs of reproductive-related processes and membrane-related processes were repressed in the pollen of knockout lines. The predicted protein interactions showed that GhGEX1 probably functioned through interactions with proteins related to reproduction and membrane. From all these investigations, it was possible to conclude that the GEX1 proteins are evolutionarily conserved in flowering plants and elucidated the pivotal roles during fertilization and early embryonic development in cotton.


Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Reproduction/genetics , Pollen/genetics , Pollen/metabolism , Plants/metabolism
10.
BMC Plant Biol ; 23(1): 409, 2023 Sep 02.
Article En | MEDLINE | ID: mdl-37658295

BACKGROUND: Cytokinin oxidase/dehydrogenase (CKX) plays a vital role in response to abiotic stress through modulating the antioxidant enzyme activities. Nevertheless, the biological function of the CKX gene family has yet to be reported in cotton. RESULT: In this study, a total of 27 GhCKXs were identified by the genome-wide investigation and distributed across 18 chromosomes. Phylogenetic tree analysis revealed that CKX genes were clustered into four clades, and most gene expansions originated from segmental duplications. The CKXs gene structure and motif analysis displayed remarkably well conserved among the four groups. Moreover, the cis-acting elements related to the abiotic stress, hormones, and light response were identified within the promoter regions of GhCKXs. Transcriptome data and RT-qPCR showed that GhCKX genes demonstrated higher expression levels in various tissues and were involved in cotton's abiotic stress and phytohormone response. The protein-protein interaction network indicates that the CKX family probably participated in redox regulation, including oxidoreduction or ATP levels, to mediate plant growth and development. Functionally identified via virus-induced gene silencing (VIGS) found that the GhCKX14 gene improved drought resistance by modulating the antioxidant-related activitie. CONCLUSIONS: In this study, the CKX gene family members were analyzed by bioinformatics, and validates the response of GhCKX gene to various phytohormone treatment and abiotic stresses. Our findings established the foundation of GhCKXs in responding to abiotic stress and GhCKX14 in regulating drought resistance in cotton.


Droughts , Gossypium , Gossypium/genetics , Antioxidants , Phylogeny , Plant Growth Regulators
11.
Healthcare (Basel) ; 11(18)2023 Sep 18.
Article En | MEDLINE | ID: mdl-37761767

Chronic ankle instability (CAI) is a prevalent condition characterized by recurring instances of the ankle giving way and persistent symptoms, including pain and diminished function. Foot and ankle external supports are commonly used in clinical practice and research for treating CAI. This systematic review aimed to assess the effects of foot and ankle external supports on the postural stability of individuals with CAI to guide clinical practice and inform future research. A comprehensive search was conducted in PubMed, Web of Science, Scopus, and Google Scholar databases from 1 January 2012 to 1 November 2022. Eighteen studies involving individuals with CAI were chosen in this systematic review. The quality of the included studies and risk of bias were assessed using Cochrane Collaboration's tool for randomized controlled trials, the Newcastle-Ottawa Scale for case-control studies, and the DELPHl-list for crossover trial studies. The external supports included in this review were ankle orthoses (elastic, semi-rigid, and active orthoses), taping (kinesiotaping and fibular reposition taping), and insoles (textured and supportive insoles). The outcome measures included static and dynamic postural stability tests, such as the single-leg stance test, star excursion balance test, Y-balance test, single-leg landing test, lateral jump test, walking test, and running test. The results showed that elastic orthoses, Kinesiotaping, and textured insoles demonstrated potential benefits in improving postural stability in individuals with CAI. Elastic orthoses decreased ankle joint motion variability, kinesiotaping facilitated cutaneous receptors and proprioceptive feedback, while textured insoles increased tactile stimulation and foot position awareness. However, the effects of semi-rigid orthoses, fibular reposition taping, and arch support insoles were inconsistent across studies. Future research should explore the long-term effects of these external supports, analyze the effects of different characteristics and combinations of supports, and employ standardized outcome measures and testing protocols for assessing postural stability.

12.
Sci Total Environ ; 902: 165574, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37474046

Catalytic oxidation is considered to be the most efficient technology for eliminating benzene from waste gas. The challenge is the reduction of the catalytic reaction temperature for the deep oxidation of benzene. Here, highly efficient RuxCeO2 catalysts were utilized to turn the number of surface oxygen vacancies and Ce-O-Ru bonds via a one-step hydrothermal method, resulting in a preferable low-temperature reducibility for the total oxidation of benzene. The T50 of the Ru0.2CeO2 catalyst for benzene oxidation was 135 °C, which was better than that of pristine CeO2 (239 °C) and 0.2Ru/CeO2 (190 °C). The superior performance of Ru0.2CeO2 was attributed to its large surface area (approximately 114.23 m2·g-1), abundant surface oxygen vacancies, and Ce-O-Ru bonds. The incorporation of Ru into the CeO2 lattice could effectively facilitate the destruction of the CeO bond and the facile release of lattice oxygen, inducing the generation of surface oxygen vacancies. Meanwhile, the bridging action of Ce-O-Ru bonds accelerated electron transfer and lattice oxygen transportation, which had a synergistic effect with surface oxygen vacancies to reduce the reaction temperature. The Ru0.2CeO2 catalyst also exhibited high catalytic stability, water tolerance, and impact resistance in terms of benzene abatement. Using in situ infrared spectroscopy, it was demonstrated that the Ru0.2CeO2 catalyst can effectively enhance the accumulation of maleate species, which are key intermediates for benzene ring opening, thereby enhancing the deep oxidation of benzene.

13.
ACS Appl Mater Interfaces ; 15(10): 12924-12935, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36854656

The construction of heterojunction photocatalysts is an effective method to improve photocatalytic efficiency since the potential gradient and built-in electron field established at the junction could enhance the efficiency of charge separation and interfacial charge transfer. Nevertheless, heterojunction photocatalysts with strong built-in electron fields remain difficult to build since the two adjacent constitutes must be satisfied with an appropriate band alignment, redox potential, and carrier concentration gradient. Here, an efficient charge transfer-induced doping strategy is proposed to enhance the heterojunction built-in electron field for stable and efficient photocatalytic performance. Carrier transfer tests show that the rectification ratio of the n-TiO2-X/n-BiOI heterojunction is significantly enhanced after being coated with graphene oxide (GO). Consequently, both the hydrogen production and photodegradation performance of the GO composite heterojunction are considerably enhanced compared with pure TiO2-X, BiOI, and n-TiO2-X/n-BiOI. This work provides a facile method to prepare heterojunction photocatalysts with a high catalytic activity.

15.
Ultrason Imaging ; 45(1): 3-16, 2023 01.
Article En | MEDLINE | ID: mdl-36524755

Due to the advantages of non-radiation and real-time performance, ultrasound imaging is essential in medical imaging. Image quality is affected by the performance of the transducer in an ultrasound imaging system. For example, the bandwidth controls the pulse length, resulting in different axial resolutions. Therefore, a transducer with a large bandwidth helps to improve imaging quality. However, large bandwidths lead to increased system cost and sometimes a loss of sensitivity and lateral resolution in attenuating media. In this paper, a deconvolution recovery method combined with a frequency-domain filtering technique (DRF) is proposed to improve the imaging quality, especially for the axial resolution. In this method, the received low-bandwidth echo signals are converted into high-bandwidth signals, which is similar to the echo signals produced by a high-bandwidth transducer, and the imaging quality is improved. Simulation and experiment results show that, compared with Delay-and-sum (DAS) method, the DRF method improved axial resolution from 0.60 to 0.41 mm in simulation and from 0.62 to 0.47 mm in the tissue-mimicking phantom experiment. The contrast ratio performance is improved to some extent compared with the DAS in experimental and in-vivo images. Besides, the proposed method has the potential to further improve image quality by combining it with adaptive weightings, such as the minimum variance method.


Image Processing, Computer-Assisted , Transducers , Ultrasonography/methods , Computer Simulation , Phantoms, Imaging , Image Processing, Computer-Assisted/methods , Algorithms
16.
Technol Health Care ; 31(1): 217-237, 2023.
Article En | MEDLINE | ID: mdl-35964219

BACKGROUND: A fundamental challenge in medical ultrasound imaging is to improve the resolution accurately. Adaptive beamforming is often used to improve lateral resolution, such as minimum variance (MV) and phase coherence factor (PCF). However, it is difficult to improve the axial resolution due to the limitation of the spatial pulse length (SPL) of the transmitted signal. OBJECTIVE: A deconvolution recovery method combines two adaptive weighting techniques to improve axial resolution. METHODS: A deconvolution recovery (DR) technique is used to improve axial resolution with a shorter SPL. Then, the DR is combined with MV and PCF (DR-MVPCF) to suppress the sidelobe. The influence of different transmission modes, regularization parameters, and the estimation of point spread function are discussed on the proposed algorithm. RESULTS: In simulation, DR-MVPCF improved axial resolution from 0.41 mm (0.98 λ) to 0.09 mm (0.21 λ) compared with MV-PCF. In the water bath experiment, DR-MVPCF provided improvement of axial resolution from 0.39 mm (0.93 λ) to 0.07 mm (0.17 λ) compared with MV-PCF. In-vivo data experiment, the DR-MVPCF method increased the speckle signal-to-noise ratio and visibility of the structure while the contrast ratio and contrast-noise ratio decreased. CONCLUSIONS: The proposed method can improve the axial resolution significantly.


Algorithms , Image Processing, Computer-Assisted , Humans , Phantoms, Imaging , Ultrasonography/methods , Computer Simulation , Signal-To-Noise Ratio , Image Processing, Computer-Assisted/methods
17.
Genes (Basel) ; 13(12)2022 11 23.
Article En | MEDLINE | ID: mdl-36553463

F-box/LR (FBXL), Leucine-rich repeats in F-box proteins, belongs to the Skp1-Cullin1-F-box protein (SCF) E3 ligase family. FBXL genes play important roles in plant growth, such as plant hormones, responses to environmental stress, and floral organ development. Here, a total of 518 FBXL genes were identified and analyzed in six plant species. Phylogenetic analysis showed that AtFBXLs, VvFBXLs, and GrFBXLs were clustered into three subfamilies (Ⅰ-Ⅲ). Based on the composition of the F-box domain and carboxyl-terminal amino acid sequence, FBXL proteins were classified into three types (Type-A/-B/-C). Whole-genome duplication (WGD) along with tandem duplications and segmental contributed to the expansion of this gene family. The result indicates that four cotton species are also divided into three subfamilies. FBXLs in cotton were classified into three clades by phylogenetic and structural analyses. Furthermore, expression analyses indicated that the expression patterns of GhFBXLs in different cotton tissues were different. The highly expressed of GH_A07G2363 in 5-8 mm anthers, indicates that this gene might play a role in the reproductive process, providing candidate genes for future studies on cotton fertility materials. This study provides an original functional opinion and a useful interpretation of the FBXL protein family in cotton.


F-Box Proteins , Multigene Family , Gene Duplication , Phylogeny , Genes, Plant , Stress, Physiological/genetics , F-Box Proteins/genetics
18.
Water Res ; 221: 118826, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-35834971

In view of the insufficient coagulation efficiency of traditional inorganic coagulants, a series of Al-Ti gels with different Ti/triethanolamine (TEA), Ti/H2O, and Ti/Al molar ratios were prepared by sol-gel process in this study. Fourier transform infrared (FTIR) spectra of the Al-Ti gels preliminarily confirmed the interaction between Al and Ti by detecting the appearance of the Al-O-Ti bond. The peak shift of the chemical bonds in X-ray photoelectron spectra (XPS) and the transformation of the hydrolysate species in the Al-Ti gels were analyzed to further explore the interaction mechanism between Al and Ti. It was found that moderate TEA could inhibit the hydrolysis of Ti precursors by taking up the coordination sites of H2O to form a CO-Ti bond. Density functional theory (DFT) calculation results showed that Ti could be incorporated into the framework of aluminum hydrolysates to form an Al-O-Ti bond, and [Al2Ti2(OH)x(TEA)y(H2O)8-x-y]14-x was the most possible copolymerization hydrolysate. Based on the above research results, the most efficient Al-Ti gel was selected and applied to the actual lake water treatment. The highest UV254 removal efficiency with the addition of Al-Ti gel was > 60%, nearly 25% higher than that of Ti gel. The hydrolysates of Al-Ti gel, such as TiO(OH)2(am), Al(OH)3(am), and [Al2Ti2(OH)x(TEA)y(H2O)8-x-y]14-x, could remove organic matters through the incorporation of charge neutralization, adsorption, complexation, and sweeping effects. These results provide a new idea for studying the interaction mechanism between Al and Ti in composite coagulants, and have theoretical guiding significance to actual water treatment.


Titanium , Water Purification , Adsorption , Aluminum , Gels , Titanium/chemistry , Water Purification/methods
19.
Water Res ; 220: 118633, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35613484

The hydrolysate species of metal-based coagulants and the binding sites of humic acid (HA) are highly dependent on the pH conditions. Exploring the binding sites and modes between coagulant hydrolysates and HA molecules is critical to understanding the coagulation mechanism. In this paper, the binding behavior between HA molecules and the hydrolysates of a polyaluminum-titanium chloride composite coagulant (PATC) was investigated under different pH conditions by semi-quantitative FTIR and XPS. It was found that oligomeric and mesopolymeric hydrolysates were the dominant species under acid conditions, which could complex with the hydroxyl and carboxyl groups of HA by forming COAl/Ti coordinate bonds. However, large amounts of H+ could compete with Al3+ and weaken the removal efficiency of HA. With the increase of pH, the hydrolysis process of the PATC and the deprotonation of HA were simultaneously underway. Under weakly acid conditions, the complexation of the aluminum hydrolysates with carboxyl groups was improved due to the gradually diminishing competition of H+ and the enhanced charge neutralization of the further polymerized hydrolysates. Consequently, the maximum UV254 removal by adding PATC was observed at pH 6. Under alkaline conditions, the sweeping effect of amorphous hydroxide dominated the HA removals, which was accompanied by the surface complexation of Al/Ti nuclear with carboxyl groups as well as the hydrogen bonds between hydroxyl and hydroxide. This study provides a new clue for the interaction mechanisms between the hydrolysates of composite coagulants and the dominant functional groups of HA at various pH conditions.


Humic Substances , Water Purification , Aluminum/chemistry , Aluminum Hydroxide/chemistry , Chlorides , Flocculation , Humic Substances/analysis , Hydroxyl Radical , Titanium/chemistry
20.
Front Mol Biosci ; 9: 888983, 2022.
Article En | MEDLINE | ID: mdl-35573733

The Jumonji C (JmjC) domain-containing protein family, an important family of histone demethylase in plants, can directly reverse histone methylation and play important roles in various growth and development processes. In the present study, 51 JmjC genes (GhJMJs) were identified by genome-wide analysis in upland cotton (Gossypium hirsutum), which can be categorized into six distinct groups by phylogenetic analysis. Extensive syntenic relationship events were found between G. hirsutum and Theobroma cacao. We have further explored the putative molecular regulatory mechanisms of the JmjC gene family in cotton. GhJMJ24 and GhJMJ49 were both preferentially expressed in embryogenic callus compared to nonembryogenic callus in cotton tissue culture, which might be regulated by transcription factors and microRNAs to some extent. Further experiments indicated that GhJMJ24 and GhJMJ49 might interact with SUVH4, SUVH6, DDM1, CMT3, and CMT1 in the nucleus, potentially in association with demethylation of H3K9me2. Taken together, our results provide a foundation for future research on the biological functions of GhJMJ genes in cotton, especially in somatic embryogenesis in cotton tissue culture, which is crucial for the regeneration of transgenic plants.

...