Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 885622, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734250

RESUMEN

Plants have evolved sophisticated systems for regulating the biosynthesis of specialized phytochemicals. Artemisinin, which is a sesquiterpene lactone widely used in anti-malaria treatment, is produced by the Artemisia annua L. plant. However, the artemisinin content in A. annua is low and difficult to meet market demands. Studies have shown that artemisinin biosynthesis in A. annua has complex temporal and spatial specificity and is under tightly transcriptional regulation. However, the mechanism of transcriptional regulation of artemisinin biosynthesis remains unclear. In this study, we identified two MYC-type bHLH transcription factors (AabHLH2 and AabHLH3) as novel regulators of artemisinin biosynthesis. These bHLH TFs act as transcription repressors and function redundantly to negatively regulate artemisinin biosynthesis. Furthermore, AabHLH2 and AabHLH3 are nuclear proteins that bind to DNA elements with similar specificity to that of AaMYC2, but lack the conserved activation domain, suggesting that repression is achieved by competition for the same cis-regulatory elements. Together, our findings reveal a novel artemisinin biosynthesis regulatory network, provide new insight into how specialized metabolites are modulated in plants, and propose a model in which different bHLH TFs coordinated in regulating artemisinin production in the plant. Finally, this study provides some useful target genes for metabolic engineering of artemisinin production via CRISPR/Cas9 gene editing.

2.
Plant Biotechnol J ; 19(7): 1412-1428, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33539631

RESUMEN

Artemisinin, a sesquiterpene lactone widely used in malaria treatment, was discovered in the medicinal plant Artemisia annua. The biosynthesis of artemisinin is efficiently regulated by jasmonate (JA) and abscisic acid (ABA) via regulatory factors. However, the mechanisms linking JA and ABA signalling with artemisinin biosynthesis through an associated regulatory network of downstream transcription factors (TFs) remain enigmatic. Here we report AaTCP15, a JA and ABA dual-responsive teosinte branched1/cycloidea/proliferating (TCP) TF, which is essential for JA and ABA-induced artemisinin biosynthesis by directly binding to and activating the promoters of DBR2 and ALDH1, two genes encoding enzymes for artemisinin biosynthesis. Furthermore, AaORA, another positive regulator of artemisinin biosynthesis responds to JA and ABA, interacts with and enhances the transactivation activity of AaTCP15 and simultaneously activates AaTCP15 transcripts. Hence, they form an AaORA-AaTCP15 module to synergistically activate DBR2, a crucial gene for artemisinin biosynthesis. More importantly, AaTCP15 expression is activated by the multiple reported JA and ABA-responsive TFs that promote artemisinin biosynthesis. Among them, AaGSW1 acts at the nexus of JA and ABA signalling to activate the artemisinin biosynthetic pathway and directly binds to and activates the AaTCP15 promoter apart from the AaORA promoter, which further facilitates formation of the AaGSW1-AaTCP15/AaORA regulatory module to integrate JA and ABA-mediated artemisinin biosynthesis. Our results establish a multilayer regulatory network of the AaGSW1-AaTCP15/AaORA module to regulate artemisinin biosynthesis through JA and ABA signalling, and provide an interesting avenue for future research exploring the special transcriptional regulation module of TCP genes associated with specialized metabolites in plants.


Asunto(s)
Artemisia annua , Artemisininas , Ácido Abscísico , Artemisia annua/genética , Artemisininas/metabolismo , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Front Plant Sci ; 11: 950, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676091

RESUMEN

The phytohormone Abscisic acid (ABA) regulates plant growth, development, and responses to abiotic stresses, including senescence, seed germination, cold stress and drought. Several kinds of researches indicate that exogenous ABA can enhance artemisinin content in A. annua. Some transcription factors related to ABA signaling are identified to increase artemisinin accumulation through activating the artemisinin synthase genes. However, no prior study on ABA transporter has been performed in A. annua. Here, we identified a pleiotropic drug resistance (PDR) transporter gene AaPDR4/AaABCG40 from A. annua. AaABCG40 was expressed mainly in roots, leaves, buds, and trichomes. GUS activity is primarily observed in roots and the vascular tissues of young leaves in proAaABCG40: GUS transgenic A. annua plants. When AaABCG40 was transferred into yeast AD12345678, yeasts expressing AaABCG40 accumulated more ABA than the control. The AaABCG40 overexpressing plants showed higher artemisinin content and stronger drought tolerance. Besides, the expression of CYP71AV1 in OE-AaABCG40 plants showed more sensitivity to exogenous ABA than that in both wild-type and iAaABCG40 plants. According to these results, they strongly suggest that AaABCG40 is involved in ABA transport in A. annua.

4.
Proteomics ; 20(10): e1900310, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32311217

RESUMEN

Artemisia annua is well known for biosynthesizing the antimalarial drug artemisinin. Here, a global proteomic profiling of A. annua is conducted with identification of a total of 13 403 proteins based on the genome sequence annotation database. Furthermore, a spectral library is generated to perform quantitative proteomic analysis using data independent acquisition mass spectrometry. Specifically, proteins between two chemotypes that produce high (HAP) and low (LAP) artemisinin content, respectively, are comprehensively quantified and compared. 182 proteins are identified with abundance significantly different between these two chemotypes means after the statistic use the p-value and fold change it is found 182 proteins can reach the demand conditions which represent the expression are significantly different between the high artemisnin content plants (HAPs) and the low artemisnin content plants (LAPs). Data are available via ProteomeXchange with identifier PXD015547. Overall, this current study globally identifies the proteome of A. annua and quantitatively compares the targeted sub-proteomes between the two cultivars of HAP and LAP, providing systematic information on metabolic pathways of A. annua.


Asunto(s)
Artemisia annua/genética , Artemisininas/metabolismo , Proteoma/genética , Proteómica , Artemisia annua/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Espectrometría de Masas
5.
Front Bioeng Biotechnol ; 8: 621127, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33614607

RESUMEN

Terpenes constitute the largest class of secondary metabolites in plants. Some terpenes are essential for plant growth and development, membrane components, and photosynthesis. Terpenes are also economically useful for industry, agriculture, and pharmaceuticals. However, there is very low content of most terpenes in microbes and plants. Chemical or microbial synthesis of terpenes are often costly. Plants have the elaborate and economic biosynthetic way of producing high-value terpenes through photosynthesis. Here we engineered the heterogenous sesquiterpenoid patchoulol production in A. annua. When using a strong promoter such as 35S to over express the avian farnesyl diphosphate synthase gene and patchoulol synthase gene, the highest content of patchoulol was 52.58 µg/g DW in transgenic plants. When altering the subcellular location of the introduced sesquiterpene synthetase via a signal peptide, the accumulation of patchoulol was observably increased to 273 µg/g DW. This case demonstrates that A. annua plant with glandular trichomes is a useful platform for synthetic biology studies.

6.
Front Plant Sci ; 10: 1084, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552076

RESUMEN

Artemisinin is an effective antimalarial sesquiterpene lactone synthesized in Artemisia annua. Various transcription factors have been previously reported that can influence the biosynthesis of artemisinin; however, the effect of YABBY family transcription factors on artemisinin biosynthesis was unknown. In the present study, we cloned and characterized AaYABBY5: a homolog of MsYABBY5 in Mentha spicata which is involved in modulating the monoterpenes, as a positive regulator of artemisinin biosynthesis in A. annua. AaYABBY5 was found localized to the nucleus, and its expression was found to be induced by exogenous methyl jasmonic acid (MeJA) treatment. In the dual-luciferase reporter assay, it was found that AaYABBY5 significantly increased the activities of promoters of amorpha-4,11-diene synthase (ADS), cytochrome P450 monooxygenase (CYP71AV1), double-bond reductase 2 (DBR2), and aldehyde dehydrogenase 1 (ALDH1) genes. Yeast one hybrid assay showed that AaYABBY5 directly bonds to the promoters of CYP71AV1 and DBR2 genes. Quantitative real-time polymerase chain reaction (qPCR) of AaYABBY5 overexpression and AaYABBY5 antisense plants revealed a significant increase in the expression of ADS, CYP71AV1, DBR2, and ALDH1 in AaYABBY5 overexpression plants and a significant decrease in the expression of these genes in AaYABBY5 antisense A. annua, respectively. Furthermore, the results of high-performance liquid chromatography (HPLC) showed that the artemisinin and its precursor dihydroartemisinic acid were significantly increased in the AaYABBY5 overexpression plants while AaYABBY5 downregulation resulted in a significant decrease in the concentration of artemisinin. Taken together, these results explicitly represent that AaYABBY5 is a positive regulator of artemisinin biosynthesis in A. annua.

7.
Front Plant Sci ; 10: 931, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379908

RESUMEN

Catharanthus roseus contains a variety of monoterpenoid indole alkaloids (MIAs), among which bisindole alkaloids vinblastine and vincristine are well-known to have antitumor effects and widely used in clinical treatment. However, their contents in C. roseus is extremely low and difficult to meet market demands. Therefore, it is of great significance to study the transcriptional regulation mechanism of MIAs biosynthesis for high yielding of bisindole alkaloids in C. roseus. Studies have shown that MIAs biosynthesis in C. roseus has complex temporal and spacial specificity and is under tight transcriptional regulation, especially bisindole alkaloids. In this study, an AP2/ERF transcription factor CrERF5 was selected by RNA-seq of C. roseus organs, and its full-length sequence was cloned and characterized. CrERF5 responds to both ethylene and JA signals and is localized in the nucleus. CrERF5 could activate the transcriptional activity of the TDC promoter. Transient overexpressing CrERF5 in C. roseus petals caused a significant increase of the expression levels of key genes in both the upstream and downstream pathways of MIAs biosynthesis while silencing CrERF5 resulted in a decrease of them. Accordingly, the contents of bisindole alkaloids anhydrovinblastine and vinblastine, monoindole alkaloids ajmalicine, vindoline, and catharanthine were strongly enhanced in CrERF5-overexpressing petals while their contents decreased in CrERF5-silenced plants. These results suggested that CrERF5 is a novel positive ethylene-JA-inducible AP2/ERF transcription factor upregulating the MIAs biosynthetic pathway leading to the bisindole alkaloids accumulation.

8.
Front Plant Sci ; 9: 1777, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30546379

RESUMEN

Artemisinin is well known for its irreplaceable curative effect on the devastating parasitic disease, Malaria. This sesquiterpenoid is specifically produced in Chinese traditional herbal plant Artemisia annua. Earlier studies have shown that phytohormone abscisic acid (ABA) plays an important role in increasing the artemisinin content, but how ABA regulates artemisinin biosynthesis is still poorly understood. In this study, we identified that AaABF3 encoded an ABRE (ABA-responsive elements) binding factor. qRT-PCR analysis showed that AaABF3 was induced by ABA and expressed much higher in trichomes where artemisinin is synthesized and accumulated. To further investigate the mechanism of AaABF3 regulating the artemisinin biosynthesis, we carried out dual-luciferase analysis, yeast one-hybrid assay and electrophoretic mobility shift assay. The results revealed that AaABF3 could directly bind to the promoter of ALDH1 gene, which is a key gene in artemisinin biosynthesis, and activate the expression of ALDH1. Functional analysis revealed that overexpression of AaABF3 in A. annua enhanced the production of artemisinin, while RNA interference of AaABF3 resulted in decreased artemisinin content. Taken together, our results demonstrated that AaABF3 played an important role in ABA-regulated artemisinin biosynthesis through direct regulation of artemisinin biosynthesis gene, ALDH1.

9.
Mol Plant ; 11(6): 776-788, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29703587

RESUMEN

Artemisia annua, commonly known as sweet wormwood or Qinghao, is a shrub native to China and has long been used for medicinal purposes. A. annua is now cultivated globally as the only natural source of a potent anti-malarial compound, artemisinin. Here, we report a high-quality draft assembly of the 1.74-gigabase genome of A. annua, which is highly heterozygous, rich in repetitive sequences, and contains 63 226 protein-coding genes, one of the largest numbers among the sequenced plant species. We found that, as one of a few sequenced genomes in the Asteraceae, the A. annua genome contains a large number of genes specific to this large angiosperm clade. Notably, the expansion and functional diversification of genes encoding enzymes involved in terpene biosynthesis are consistent with the evolution of the artemisinin biosynthetic pathway. We further revealed by transcriptome profiling that A. annua has evolved the sophisticated transcriptional regulatory networks underlying artemisinin biosynthesis. Based on comprehensive genomic and transcriptomic analyses we generated transgenic A. annua lines producing high levels of artemisinin, which are now ready for large-scale production and thereby will help meet the challenge of increasing global demand of artemisinin.


Asunto(s)
Artemisia annua/genética , Artemisia annua/metabolismo , Artemisininas/metabolismo , Evolución Molecular , Genes de Plantas/genética , Genómica , Ingeniería Metabólica , Anotación de Secuencia Molecular
10.
New Phytol ; 218(2): 567-578, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29377155

RESUMEN

Glandular trichomes and cuticles are both specialized structures that cover the epidermis of aerial plant organs. The former are commonly regarded as 'biofactories' for producing valuable natural products. The latter are generally considered as natural barriers for defending plants against abiotic and biotic stresses. However, the regulatory network for their formation and relationship remains largely elusive. Here we identify a homeodomain-leucine zipper (HD-ZIP) IV transcription factor, AaHD8, directly promoting the expression of AaHD1 for glandular trichome initiation in Artemisia annua. We found that AaHD8 positively regulated leaf cuticle development in A. annua via controlling the expression of cuticle-related enzyme genes. Furthermore, AaHD8 interacted with a MIXTA-like protein AaMIXTA1, a positive regulator of trichome initiation and cuticle development, forming a regulatory complex and leading to enhanced transcriptional activity in regulating the expression of AaHD1 and cuticle development genes. Our results reveal a molecular mechanism by which a novel HD-ZIP IV/MIXTA complex plays a significant role in regulating epidermal development, including glandular trichome initiation and cuticle formation.


Asunto(s)
Artemisia annua/crecimiento & desarrollo , Complejos Multiproteicos/metabolismo , Epidermis de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Tricomas/crecimiento & desarrollo , Artemisia annua/genética , Artemisia annua/ultraestructura , Secuencia de Bases , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Epidermis de la Planta/genética , Epidermis de la Planta/ultraestructura , Proteínas de Plantas/genética , Unión Proteica , Transcripción Genética , Tricomas/genética , Tricomas/ultraestructura
11.
New Phytol ; 217(1): 261-276, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28940606

RESUMEN

The glandular secretory trichomes (GSTs) on Artemisia annua leaves have the capacity to secrete and store artemisinin, a compound which is the most effective treatment for uncomplicated malaria. An effective strategy to improve artemisinin content is therefore to increase the density of GSTs in A. annua. However, the formation mechanism of GSTs remains poorly understood. To explore the mechanisms of GST initiation in A. annua, we screened myeloblastosis (MYB) transcription factor genes from a GST transcriptome database and identified a MIXTA transcription factor, AaMIXTA1, which is expressed predominantly in the basal cells of GST in A. annua. Overexpression and repression of AaMIXTA1 resulted in an increase and decrease, respectively, in the number of GSTs as well as the artemisinin content in transgenic plants. Transcriptome analysis and cuticular lipid profiling showed that AaMIXTA1 is likely to be responsible for activating cuticle biosynthesis. In addition, dual-luciferase reporter assays further demonstrated that AaMIXTA1 could directly activate the expression of genes related to cuticle biosynthesis. Taken together, AaMIXTA1 regulated cuticle biosynthesis and prompted GST initiation without any abnormal impact on the morphological structure of the GSTs and so provides a new way to improve artemisinin content in this important medicinal plant.


Asunto(s)
Artemisia annua/metabolismo , Artemisininas/metabolismo , Factores de Transcripción/metabolismo , Tricomas/metabolismo , Secuencia de Aminoácidos , Artemisia annua/genética , Artemisia annua/ultraestructura , Regulación de la Expresión Génica de las Plantas , Especificidad de Órganos , Filogenia , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Epidermis de la Planta/ultraestructura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Alineación de Secuencia , Factores de Transcripción/genética , Tricomas/genética , Tricomas/ultraestructura
12.
Sci Adv ; 4(11): eaas9357, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30627665

RESUMEN

Artemisia annua produces the valuable medicinal component, artemisinin, which is a sesquiterpene lactone widely used in malaria treatment. AaORA, a homolog of CrORCA3, which is involved in activating terpenoid indole alkaloid biosynthesis in Catharanthus roseus, is a jasmonate (JA)-responsive and trichome-specific APETALA2/ETHYLENE-RESPONSE FACTOR that plays a pivotal role in artemisinin biosynthesis. However, the JA signaling mechanism underlying AaORA-mediated artemisinin biosynthesis remains enigmatic. Here, we report that AaORA forms a transcriptional activator complex with AaTCP14 (TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL FACTOR 14), which is also predominantly expressed in trichomes. AaORA and AaTCP14 synergistically bind to and activate the promoters of two genes, double bond reductase 2 (DBR2) and aldehyde dehydrogenase 1 (ALDH1), both of which encode enzymes vital for artemisinin biosynthesis. AaJAZ8, a repressor of the JA signaling pathway, interacts with both AaTCP14 and AaORA and represses the ability of the AaTCP14-AaORA complex to activate the DBR2 promoter. JA treatment induces AaJAZ8 degradation, allowing the AaTCP14-AaORA complex to subsequently activate the expression of DBR2, which is essential for artemisinin biosynthesis. These data suggest that JA activation of the AaTCP14-AaORA complex regulates artemisinin biosynthesis. Together, our findings reveal a novel artemisinin biosynthetic pathway regulatory network and provide new insight into how specialized metabolism is modulated by the JA signaling pathway in plants.


Asunto(s)
Artemisia annua/metabolismo , Artemisininas/metabolismo , Vías Biosintéticas/efectos de los fármacos , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oxilipinas/farmacología , Proteínas de Plantas/metabolismo , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Artemisia annua/efectos de los fármacos , Artemisia annua/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética
13.
Front Plant Sci ; 8: 723, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28533790

RESUMEN

Artemisinin, a sesquiterpenoid endoperoxide, isolated from the plant Artemisia annua L., is widely used in the treatment of malaria. Another sesquiterpenoid, ß-caryophyllene having antibiotic, antioxidant, anticarcinogenic and local anesthetic activities, is also presented in A. annua. The role played by sesquiterpene transporters in trichomes and accumulation of these metabolites is poorly understood in A. annua and in trichomes of other plant species. We identified AaPDR3, encoding a pleiotropic drug resistance (PDR) transporter located to the plasma membrane from A. annua. Expression of AaPDR3 is tissue-specifically and developmentally regulated in A. annua. GUS activity is primarily restricted to T-shaped trichomes of old leaves and roots of transgenic A. annua plants expressing proAaPDR3: GUS. The level of ß-caryophyllene was decreased in transgenic A. annua plants expressing AaPDR3-RNAi while transgenic A. annua plants expressing increased levels of AaPDR3 accumulated higher levels of ß-caryophyllene. When AaPDR3 was expressed in transformed yeast, yeasts expressing AaPDR3 accumulated more ß-caryophyllene, rather than germacrene D and ß-farnesene, compared to the non-expressing control.

14.
New Phytol ; 214(1): 304-316, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28001315

RESUMEN

Artemisinin is a type of sesquiterpene lactone well known as an antimalarial drug, and is specifically produced in glandular trichomes of Artemisia annua. However, the regulatory network for the artemisinin biosynthetic pathway remains poorly understood. Exploration of trichome-specific transcription factors would facilitate the elucidation of regulatory mechanism of artemisinin biosynthesis. The WRKY transcription factor GLANDULAR TRICHOME-SPECIFIC WRKY 1 (AaGSW1) was cloned and analysed in A. annua. AaGSW1 exhibited similar expression patterns to the trichome-specific genes of the artemisinin biosynthetic pathway and AP2/ERF transcription factor AaORA. A ß-glucuronidase (GUS) staining assay further demonstrated that AaGSW1 is a glandular trichome-specific transcription factor. AaGSW1 positively regulates CYP71AV1 and AaORA expression by directly binding to the W-box motifs in their promoters. Overexpression of AaGSW1 in A. annua significantly improves artemisinin and dihydroartemisinic acid contents; moreover, AaGSW1 can be directly regulated by AaMYC2 and AabZIP1, which are positive regulators of jasmonate (JA)- and abscisic acid (ABA)-mediated artemisinin biosynthetic pathways, respectively. These results demonstrate that AaGSW1 is a glandular trichome-specific WRKY transcription factor and a positive regulator in the artemisinin biosynthetic pathway. Moreover, we propose that two trifurcate feed-forward pathways involving AaGSW1, CYP71AV1 and AaMYC2/AabZIP1 function in the JA/ABA response in A. annua.


Asunto(s)
Artemisia annua/metabolismo , Artemisininas/metabolismo , Vías Biosintéticas , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Artemisia annua/genética , Vías Biosintéticas/genética , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucuronidasa/metabolismo , Modelos Biológicos , Especificidad de Órganos , Oxilipinas/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Unión Proteica/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Tricomas/metabolismo
15.
New Phytol ; 213(3): 1145-1155, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27659595

RESUMEN

Glandular trichomes are generally considered biofactories that produce valuable chemicals. Increasing glandular trichome density is a very suitable way to improve the productivity of these valuable metabolites, but little is known about the regulation of glandular trichome formation. Phytohormone jasmonate (JA) promotes glandular trichome initiation in various plants, but its mechanism is also unknown. By searching transcription factors regulated by JA in Artemisia annua, we identified a novel homeodomain-leucine zipper transcription factor, HOMEODOMAIN PROTEIN 1 (AaHD1), which positively controls both glandular and nonglandular trichome initiations. Overexpression of AaHD1 in A. annua significantly increased glandular trichome density without harming plant growth. Consequently, the artemisinin content was improved. AaHD1 interacts with A. annua jasmonate ZIM-domain 8 (AaJAZ8), which is a repressor of JA, thereby resulting in decreased transcriptional activity. AaHD1 knockdown lines show decreased sensitivity to JA on glandular trichome initiation, which indicates that AaHD1 plays an important role in JA-mediated glandular trichome initiation. We identified a new transcription factor that promotes A. annua glandular trichome initiation and revealed a novel molecular mechanism by which a homeodomain protein transduces JA signal to promote glandular trichome initiation. Our results also suggested a connection between glandular and nonglandular trichome formations.


Asunto(s)
Artemisia annua/embriología , Artemisia annua/metabolismo , Ciclopentanos/farmacología , Oxilipinas/farmacología , Proteínas de Plantas/metabolismo , Tricomas/embriología , Tricomas/metabolismo , Artemisia annua/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Modelos Biológicos , Organogénesis/efectos de los fármacos , Filogenia , Hojas de la Planta/ultraestructura , Proteínas de Plantas/química , Plantas Modificadas Genéticamente , Dominios Proteicos , Transcripción Genética/efectos de los fármacos , Tricomas/efectos de los fármacos , Tricomas/ultraestructura
16.
Plant Cell Physiol ; 57(9): 1961-71, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27388340

RESUMEN

The NAC (NAM, ATAF and CUC) superfamily is one of the largest plant-specific transcription factor families. NAC transcription factors always play important roles in response to various abiotic stresses. A NAC transcription factor gene AaNAC1 containing a complete open reading frame (ORF) of 864 bp was cloned from Artemisia annua. The expression of AaNAC1 could be induced by dehydration, cold, salicylic acid (SA) and methyl jasmonate (MJ), suggesting that it might be a key regulator of stress signaling pathways in A. annua. AaNAC1 was shown to be localized to the nuclei by transforming tobacco leaf epidermal cells. When AaNAC1 was overexpressed in A. annua, the content of artemisinin and dihydroartemisinic acid was increased by 79% and 150%, respectively. The expression levels of artemisinin biosynthetic pathway genes, i.e. amorpha-4,11-diene synthase (ADS), artemisinic aldehyde Δ11(13) reductase (DBR2) and aldehyde dehydrogenase 1 (ALDH1), were increased. Dual luciferase (dual-LUC) assays showed that AaNAC1 could activate the transcription of ADS in vivo. The transgenic A. annua exhibited increased tolerance to drought and resistance to Botrytis cinerea. When AaNAC1 was overexpressed in Arabidopsis, the transgenic Arabidopsis were markedly more tolerant to drought. The transgenic Arabidopsis showed increased resistance to B. cinerea. These results indicate that AaNAC1 can potentially be used in transgenic breeding for improving the content of artemisinin and drought tolerance in A. annua.


Asunto(s)
Artemisia annua/fisiología , Artemisininas/metabolismo , Botrytis/patogenicidad , Factores de Transcripción/genética , Arabidopsis/genética , Arabidopsis/microbiología , Artemisia annua/genética , Artemisia annua/microbiología , Resistencia a la Enfermedad/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo
17.
Biomed Res Int ; 2016: 7314971, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27064403

RESUMEN

Artemisinin is an effective component of drugs against malaria. The regulation of artemisinin biosynthesis is at the forefront of artemisinin research. Previous studies showed that AaWRKY1 can regulate the expression of ADS, which is the first key enzyme in artemisinin biosynthetic pathway. In this study, AaWRKY1 was cloned, and it activated ADSpro and CYPpro in tobacco using dual-LUC assay. To further study the function of AaWRKY1, pCAMBIA2300-AaWRKY1 construct under 35S promoter was generated. Transgenic plants containing AaWRKY1 were obtained, and four independent lines with high expression of AaWRKY1 were analyzed. The expression of ADS and CYP, the key enzymes in artemisinin biosynthetic pathway, was dramatically increased in AaWRKY1-overexpressing A. annua plants. Furthermore, the artemisinin yield increased significantly in AaWRKY1-overexpressing A. annua plants. These results showed that AaWRKY1 increased the content of artemisinin by regulating the expression of both ADS and CYP. It provides a new insight into the mechanism of regulation on artemisinin biosynthesis via transcription factors in the future.


Asunto(s)
Artemisia annua/genética , Artemisininas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Artemisia annua/metabolismo , Artemisininas/análisis , Clonación Molecular , Proteínas de Unión al ADN/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/metabolismo
18.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1017-1018: 153-162, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26974868

RESUMEN

Tomato style is the pathway for pollen germination and pollen tubes growth from the stigma to the ovules where fertilization occurs. It is essential to supplying the nutrients for pollen tube growth and guidance for the pollen tubes. To our knowledge, style also regulates gametophytic self-incompatibility (SI) in tomato species. This study identified the metabolites and monitored the metabolic changes of self-incompatible and self-compatible tomato with self-pollinated or unpollinated styles by gas chromatography-mass spectrometry (GC-MS). A total of 9 classes of compounds were identified in SI and self-compatibility (SC) self-pollinated and unpollinated styles which included amino acids, sugars, fatty acids/lipids, amines, organic acids, alcohols, nitriles, inorganic acids and other compounds. The contents of d-Mannose-6-phosphate, Cellobiose, Myristic acid, 2,4-Diaminobutyric acid, Inositol and Urea were significantly decreased and the rest did not significantly change in SI styles. But change of metabolites content significantly happened in SC styles. In addition, among the total 9 classes of compounds, the different metabolites accounted for a different proportion in amino acids, sugars, amines, organic acids and alcohols compared SC and SI. The result indicated that the physiological changes of styles existed differences in SC and SI after self pollination.


Asunto(s)
Polinización , Solanum lycopersicum/fisiología , Cromatografía de Gases y Espectrometría de Masas , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo
19.
New Phytol ; 210(4): 1269-81, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26864531

RESUMEN

The plant Artemisia annua is well known due to the production of artemisinin, a sesquiterpene lactone that is widely used in malaria treatment. Phytohormones play important roles in plant secondary metabolism, such as jasmonic acid (JA), which can induce artemisinin biosynthesis in A. annua. Nevertheless, the JA-inducing mechanism remains poorly understood. The expression of gene AaMYC2 was rapidly induced by JA and AaMYC2 binds the G-box-like motifs within the promoters of gene CYP71AV1 and DBR2, which are key structural genes in the artemisinin biosynthetic pathway. Overexpression of AaMYC2 in A. annua significantly activated the transcript levels of CYP71AV1 and DBR2, which resulted in an increased artemisinin content. By contrast, artemisinin content was reduced in the RNAi transgenic A. annua plants in which the expression of AaMYC2 was suppressed. Meanwhile, the RNAi transgenic A. annua plants showed lower sensitivity to methyl jasmonate treatment than the wild-type plants. These results demonstrate that AaMYC2 is a positive regulator of artemisinin biosynthesis and is of great value in genetic engineering of A. annua for increased artemisinin production.


Asunto(s)
Artemisia annua/genética , Artemisininas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Factores de Transcripción/metabolismo , Acetatos/farmacología , Artemisia annua/metabolismo , Vías Biosintéticas , Ciclopentanos/farmacología , Expresión Génica , Oxilipinas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Interferencia de ARN , Factores de Transcripción/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-26854826

RESUMEN

A rapid and simple reversed phase liquid chromatographic system has been developed for simultaneous analysis of terpenoid indole alkaloids (TIAs) and their precursors. This method allowed separation of 11 compounds consisting of eight TIAs (ajmalicine, serpentine, catharanthine, vindoline, vindolinine, vincristine, vinblastine, and anhydrovinblastine) and three related precursors i.e., tryptophan, tryptamine and loganin. The system has been applied for screening the TIAs and precursors in Catharanthus roseus plant extracts. In this study, different organs i.e., flowers, leaves, stems, and roots of C. roseus were investigated. The results indicate that TIAs and precursor accumulation varies qualitatively and quantitatively in different organs of C. roseus. The precursors showed much lower levels than TIAs in all organs. Leaves and flowers accumulate higher level of vindoline, catharanthine and anhydrovinblastine while roots have higher level of ajmalicine, vindolinine and serpentine. Moreover, the alkaloid profiles of leaves harvested at different ages and different growth stages were studied. The results show that the levels of monoindole alkaloids decreased while bisindole alkaloids increased with leaf aging and upon plant growth. The HPLC method has been successfully applied to detect TIAs and precursors in different types of C. roseus samples to facilitate further study of the TIA pathway and its regulation in C. roseus plants.


Asunto(s)
Catharanthus/química , Cromatografía Líquida de Alta Presión/métodos , Alcaloides de Triptamina Secologanina/análisis , Cromatografía Líquida de Alta Presión/economía , Flores/química , Extractos Vegetales/química , Hojas de la Planta/química , Raíces de Plantas/química , Tallos de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...