Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Control Release ; 375: 249-268, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260573

RESUMEN

Cancer immunotherapy, as an emerging cancer treatment approach, harnesses the patient's own immune system to effectively prevent tumor recurrence or metastasis. However, its clinical application has been significantly hindered by relatively low immune response rates. In recent years, metal-based biomaterials have been extensively studied as effective immunomodulators and potential tools for enhancing anti-tumor immune responses, enabling the reversal of immune suppression without inducing toxic side effects. This review introduces the classification of bioactive metal elements and summarizes their immune regulatory mechanisms. In addition, we discuss the immunomodulatory roles of biomaterials constructed from various metals, including aluminum, manganese, gold, calcium, zinc, iron, magnesium, and copper. More importantly, a systematic overview of their applications in enhancing immunotherapy is provided. Finally, the prospects and challenges of metal-based biomaterials with immunomodulatory functions in cancer immunotherapy are outlined.

2.
Biosci Rep ; 41(6)2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34003249

RESUMEN

BACKGROUND: In the kidney glucose is freely filtered by the glomerulus and, mainly, reabsorbed by sodium glucose cotransporter 2 (SGLT2) expressed in the early proximal tubule. Human proximal tubule epithelial cells (PTECs) undergo pathological and fibrotic changes seen in diabetic kidney disease (DKD) in response to elevated glucose. We developed a specific in vitro model of DKD using primary human PTECs with exposure to high D-glucose and TGF-ß1 and propose a role for SGLT2 inhibition in regulating fibrosis. METHODS: Western blotting was performed to detect cellular and secreted proteins as well as phosphorylated intracellular signalling proteins. qPCR was used to detect CCN2 RNA. Gamma glutamyl transferase (GT) activity staining was performed to confirm PTEC phenotype. SGLT2 and ERK inhibition on high D-glucose, 25 mM, and TGF-ß1, 0.75 ng/ml, treated cells was explored using dapagliflozin and U0126, respectively. RESULTS: Only the combination of high D-glucose and TGF-ß1 treatment significantly up-regulated CCN2 RNA and protein expression. This increase was significantly ameliorated by dapagliflozin. High D-glucose treatment raised phospho ERK which was also inhibited by dapagliflozin. TGF-ß1 increased cellular phospho SSXS Smad3 serine 423 and 425, with and without high D-glucose. Glucose alone had no effect. Smad3 serine 204 phosphorylation was significantly raised by a combination of high D-glucose+TGF-ß1; this rise was significantly reduced by both SGLT2 and MEK inhibition. CONCLUSIONS: We show that high D-glucose and TGF-ß1 are both required for CCN2 expression. This treatment also caused Smad3 linker region phosphorylation. Both outcomes were inhibited by dapagliflozin. We have identified a novel SGLT2 -ERK mediated promotion of TGF-ß1/Smad3 signalling inducing a pro-fibrotic growth factor secretion. Our data evince support for substantial renoprotective benefits of SGLT2 inhibition in the diabetic kidney.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Células Epiteliales/efectos de los fármacos , Glucosa/toxicidad , Glucósidos/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Proteína Smad2/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Células Cultivadas , Factor de Crecimiento del Tejido Conjuntivo/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibrosis , Humanos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Fosforilación , Transducción de Señal , Factor de Crecimiento Transformador beta1/farmacología
3.
J Endocrinol ; 232(3): 437-450, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28057868

RESUMEN

Corticosteroids directly affect the heart and vasculature and are implicated in the pathogenesis of heart failure. Attention is focussed upon the role of the mineralocorticoid receptor (MR) in mediating pro-fibrotic and other adverse effects of corticosteroids upon the heart. In contrast, the role of the glucocorticoid receptor (GR) in the heart and vasculature is less well understood. We addressed this in mice with cardiomyocyte and vascular smooth muscle deletion of GR (SMGRKO mice). Survival of SMGRKO mice to weaning was reduced compared with that of littermate controls. Doppler measurements of blood flow across the mitral valve showed an elongated isovolumetric contraction time in surviving adult SMGRKO mice, indicating impairment of the initial left ventricular contractile phase. Although heart weight was elevated in both genders, only male SMGRKO mice showed evidence of pathological cardiomyocyte hypertrophy, associated with increased myosin heavy chain-ß expression. Left ventricular fibrosis, evident in both genders, was associated with elevated levels of mRNA encoding MR as well as proteins involved in cardiac remodelling and fibrosis. However, MR antagonism with spironolactone from birth only modestly attenuated the increase in pro-fibrotic gene expression in SMGRKO mice, suggesting that elevated MR signalling is not the primary driver of cardiac fibrosis in SMGRKO mice, and cardiac fibrosis can be dissociated from MR activation. Thus, GR contributes to systolic function and restrains normal cardiac growth, the latter through gender-specific mechanisms. Our findings suggest the GR:MR balance is critical in corticosteroid signalling in specific cardiac cell types.


Asunto(s)
Músculo Liso Vascular/metabolismo , Miocitos Cardíacos/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Corticosterona/sangre , Femenino , Fibrosis/metabolismo , Fibrosis/patología , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Contracción Miocárdica/genética , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Receptores de Glucocorticoides/genética , Factores Sexuales , Espironolactona/farmacología , Función Ventricular Izquierda/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA