Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Surg ; 11: 1307460, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486796

RESUMEN

Introduction: The Tarlov cysts are pathological enlargements of the cerebrospinal fluid spaces between the endoneurium and perineurium, which can cause intolerable sciatic pain, motor impairment of lower limbs, and bladder/bowel dysfunction. Currently, the treatment results are unsatisfactory due to the low cure rates and extensive surgical trauma. Thus, there is an ongoing exploration of surgical techniques for Tarlov treatment. In the current study, we present a novel neuroendoscopic-assisted technique that combines the fenestration, leakage sealing, and tamponade of the Tarlov cyst. Methods: Between January 2020 and December 2021, a total of 32 Tarlov patients were enrolled and received neuroendoscopic-assisted surgery. Their pre- and post-surgical Visual Analogue Scale (VAS) scores, major complaints, and MR imaging were recorded for comparison. Results: 27 of 32 patients (84.4%) patients demonstrated immediate pain relief as their VAS scores decreased from 5.6 ± 1.5 to 2.5 ± 1.1 (p < 0.01) on the first day after surgery. At the 3-month follow-up, the patients' average VAS score continued to decrease (1.94 ± 0.8). Meanwhile, saddle paresthesia, urinary incontinence, and constipation were relieved in 6 (50%), 4 (80%), and 5 (41.7%), respectively, according to patients self-report. No surgical-related complication was observed in any of the cases. Discussion: We conclude that neuroendoscopic-assisted surgery is an effective surgical method for symptomatic Tarlov cysts with minimized complications.

2.
J Phys Chem Lett ; 12(37): 8982-8990, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34506716

RESUMEN

For ternary organic solar cells (T-OSCs), introducing the third component (D2) can significantly enhance the efficiency of cell while still maintaining easy fabrication. However, it brings difficulty in physical understanding of the fundamental mechanism because of the more complicated photophysical processes in T-OSCs. Accordingly, how the guest donor D2 regulates the charge transfer mechanism was explored in theory using three T-OSCs containing two donors and an acceptor. The results point out that larger differences in molecular weight and/or backbone between D2 and the host donor D1 cause different charge transfer mechanisms, which hardly provide a coexisting charge transfer path. Besides, strong absorption capacity of D2 with a high oscillator strength would produce favorable regulation of the charge transfer mechanism. Therefore, this work clarifies the influence of D2 on the charge transfer mechanism in T-OSCs, which suggests that the method of improving the power conversion efficiency cannot be generalized but rather must be tailored to specific conditions.

3.
ChemSusChem ; 12(20): 4570-4600, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31313523

RESUMEN

Over the past decade, organic solar cells (OSCs) have received considerable attention from the scientific community and are considered one of the most important sources of low-cost electricity production. Recently, OSC-based on star-shaped small-molecule (SM) non-fullerene acceptors (NFAs) have developed rapidly, and the highest power conversion efficiency (PCE) has exceeded 10 %. The star-shaped SM NFAs not only have three-dimensional charge-transport characteristics similar to fullerenes but also have a strong light absorption capacities and easily tunable energy levels. They are potential candidates as outstanding acceptor materials. In this Review, research progress in of star-shaped SM NFAs OSCs is reviewed specifically. Moreover, the influence of molecular structure, central unit, and peripheral linking group on OSC performance has been evaluated systematically. This Review could stimulate inspiration for designing high-performance OSC acceptor materials in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...