Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 6(9): 1271-1278, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35817826

RESUMEN

Whether increased photosynthates under elevated atmospheric CO2 could translate into sustained biomass accumulation in forest trees remains uncertain. Here we demonstrate how tree radial growth is closely linked to litterfall dynamics, which enhances nitrogen recycling to support a sustained effect of CO2 fertilization on tree-ring growth. Our ten-year observations in two alpine treeline forests indicated that annual (or seasonal) stem radial increments generally had a positive relationship with the previous year's (or season's) litterfall and its associated nitrogen return and resorption. Annual tree-ring width, annual litterfall and annual nitrogen return and resorption all showed an increasing trend during 2007-2017, and most of the variations were explained by elevated atmospheric CO2 rather than climate change. Similar patterns were found in the longer time series of tree-ring width index from 1986-2017. The regional representativeness of our observed patterns was confirmed by the literature data of six other tree species at 11 treeline sites over the Tibetan Plateau. Enhanced nitrogen recycling through increased litterfall under elevated atmospheric CO2 supports a general increasing trend of tree-ring growth in recent decades, especially in cold and nitrogen-poor environments.


Asunto(s)
Nitrógeno , Árboles , Dióxido de Carbono , Fertilización , Hojas de la Planta
2.
Nat Ecol Evol ; 6(3): 315-323, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35027723

RESUMEN

Experiments show that elevated atmospheric CO2 (eCO2) often enhances plant photosynthesis and productivity, yet this effect varies substantially and may be climate sensitive. Understanding if, where and how water supply regulates CO2 enhancement is critical for projecting terrestrial responses to increasing atmospheric CO2 and climate change. Here, using data from 14 long-term ecosystem-scale CO2 experiments, we show that the eCO2 enhancement of annual aboveground net primary productivity is sensitive to annual precipitation and that this sensitivity differs between woody and grassland ecosystems. During wetter years, CO2 enhancement increases in woody ecosystems but declines in grass-dominated systems. Consistent with this difference, woody ecosystems can increase leaf area index in wetter years more effectively under eCO2 than can grassland ecosystems. Overall, and across different precipitation regimes, woody systems had markedly stronger CO2 enhancement (24%) than grasslands (13%). We developed an empirical relationship to quantify aboveground net primary productivity enhancement on the basis of changes in leaf area index, providing a new approach for evaluating eCO2 impacts on the productivity of terrestrial ecosystems.


Asunto(s)
Ecosistema , Pradera , Dióxido de Carbono , Fotosíntesis , Abastecimiento de Agua
3.
Tree Physiol ; 42(2): 304-316, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34312673

RESUMEN

Climate models project warmer summer temperatures will increase the frequency and heat severity of droughts in temperate forests of Eastern North America. Hotter droughts are increasingly documented to affect tree growth and forest dynamics, with critical impacts on tree mortality, carbon sequestration and timber provision. The growing acknowledgement of the dominant role of drought timing on tree vulnerability to water deficit raises the issue of our limited understanding of radial growth phenology for most temperate tree species. Here, we use well-replicated dendrometer band data sampled frequently during the growing season to assess the growth phenology of 610 trees from 15 temperate species over 6 years. Patterns of diameter growth follow a typical logistic shape, with growth rates reaching a maximum in June, and then decreasing until process termination. On average, we find that diffuse-porous species take 16-18 days less than other wood-structure types to put on 50% of their annual diameter growth. However, their peak growth rate occurs almost a full month later than ring-porous and conifer species (ca. 24 ± 4 days; mean ± 95% credible interval). Unlike other species, the growth phenology of diffuse-porous species in our dataset is highly correlated with their spring foliar phenology. We also find that the later window of growth in diffuse-porous species, coinciding with peak evapotranspiration and lower water availability, exposes them to a higher water deficit of 88 ± 19 mm (mean ± SE) during their peak growth than ring-porous and coniferous species (15 ± 35 mm and 30 ± 30 mm, respectively). Given the high climatic sensitivity of wood formation, our findings highlight the importance of wood porosity as one predictor of species climatic sensitivity to the projected intensification of the drought regime in the coming decades.


Asunto(s)
Tracheophyta , Árboles , Cambio Climático , Sequías , Bosques , Porosidad , Agua , Xilema
4.
Glob Chang Biol ; 26(11): 6156-6167, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33245613

RESUMEN

Forest resource use efficiencies (RUEs) can vary with tree age, but the nature of these trends and their underlying mechanisms are not well understood. Understanding the age dynamics of forest RUEs and their drivers is vital for assessing the trade-offs between forest functions and resource consumption, making rational management policy, and projecting ecosystem carbon dynamics. Here we used the FLUXNET2015 and AmeriFlux datasets and published literature to explore the age-dependent variability of forest light use efficiency (LUE) and inherent water use efficiency as well as their main regulatory variables in temperate regions. Our results showed that evergreen forest RUEs initially increased before reaching the mature stage (i.e., around 90 years old), and then gradually declined; in contrast, RUEs continuously increased with age for mature deciduous forests. Changing canopy photosynthetic capacity (Amax) was the primary cause of age-related changes in RUEs across temperate forest sites. More importantly, soil nitrogen (N) increased in mature deciduous forests through time but decreased in older evergreen forests. The age-dependent changes in soil N were closely linked with the age dynamics of Amax for mature temperate forests. Additionally, soil nutrient conditions played a greater role in deciduous forest RUEs than evergreen forest RUEs. This study highlights the importance of stand age and forest type on temperate forest RUEs over the long term.


Asunto(s)
Ecosistema , Bosques , Fotosíntesis , Suelo , Árboles
5.
Nat Commun ; 8(1): 151, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28751686

RESUMEN

Forests play an important role in global carbon cycles. However, the lack of available information on carbon stocks in dead organic matter, including woody debris and litter, reduces the reliability of assessing the carbon cycles in entire forest ecosystems. Here we estimate that the national DOM carbon stock in the period of 2004-2008 is 925 ± 54 Tg, with an average density of 5.95 ± 0.35 Mg C ha-1. Over the past two decades from periods of 1984-1988 to 2004-2008, the national dead organic matter carbon stock has increased by 6.7 ± 2.2 Tg carbon per year, primarily due to increasing forest area. Temperature and precipitation increase the carbon density of woody debris, but decrease that of litter. Additionally, the woody debris increases significantly with above ground biomass and forest age. Our results can improve estimates of the carbon budget in China's forests and for better understanding of effects of climate and stand characteristics on dead organic matter distribution.Reliable estimates of the total forest carbon (C) pool are lacking due to insufficient information on dead organic matter (DOM). Here, the authors estimate that the current DOM C stock in China is 925 ± 54 Tg and that it grew by 6.7 ± 2.2 Tg C/yr over the past two decades primarily due to increasing forest area.

6.
Nature ; 534(7608): 483-4, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27309806
7.
Proc Natl Acad Sci U S A ; 112(51): 15591-6, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26644555

RESUMEN

The terrestrial biosphere is currently a strong carbon (C) sink but may switch to a source in the 21st century as climate-driven losses exceed CO2-driven C gains, thereby accelerating global warming. Although it has long been recognized that tropical climate plays a critical role in regulating interannual climate variability, the causal link between changes in temperature and precipitation and terrestrial processes remains uncertain. Here, we combine atmospheric mass balance, remote sensing-modeled datasets of vegetation C uptake, and climate datasets to characterize the temporal variability of the terrestrial C sink and determine the dominant climate drivers of this variability. We show that the interannual variability of global land C sink has grown by 50-100% over the past 50 y. We further find that interannual land C sink variability is most strongly linked to tropical nighttime warming, likely through respiration. This apparent sensitivity of respiration to nighttime temperatures, which are projected to increase faster than global average temperatures, suggests that C stored in tropical forests may be vulnerable to future warming.


Asunto(s)
Secuestro de Carbono , Calentamiento Global , Clima Tropical , Ecosistema
8.
New Phytol ; 208(3): 674-83, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26058406

RESUMEN

Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects - bark beetles and defoliators - which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree-insect interactions will better inform projections of forest ecosystem responses to climate change.


Asunto(s)
Cambio Climático , Sequías , Herbivoria , Insectos/fisiología , Árboles/fisiología , Animales
9.
Science ; 333(6045): 988-93, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21764754

RESUMEN

The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year(-1)) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year(-1) from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year(-1) partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year(-1). Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year(-1), with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.


Asunto(s)
Secuestro de Carbono , Ecosistema , Árboles , Atmósfera , Biomasa , Carbono/análisis , Dióxido de Carbono/análisis , Cambio Climático , Conservación de los Recursos Naturales , Clima Tropical
10.
Ecol Appl ; 16(1): 125-32, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16705966

RESUMEN

We compared estimates of net primary production (NPP) from the MODIS satellite with estimates from a forest ecosystem process model (PnET-CN) and forest inventory and analysis (FIA) data for forest types of the mid-Atlantic region of the United States. The regional means were similar for the three methods and for the dominant oak-hickory forests in the region. However, MODIS underestimated NPP for less-dominant northern hardwood forests and overestimated NPP for coniferous forests. Causes of inaccurate estimates of NPP by MODIS were (1) an aggregated classification and parameterization of diverse deciduous forests in different climatic environments into a single class that averages different radiation conversion efficiencies; and (2) lack of soil water constraints on NPP for forests or areas that occur on thin or sandy, coarse-grained soil. We developed the "available soil water index" for adjusting the MODIS NPP estimates, which significantly improved NPP estimates for coniferous forests. The MODIS NPP estimates have many advantages such as globally continuous monitoring and remarkable accuracy for large scales. However, at regional or local scales, our study indicates that it is necessary to adjust estimates to specific vegetation types and soil water conditions.


Asunto(s)
Ecosistema , Plantas Comestibles/crecimiento & desarrollo , Comunicaciones por Satélite , Suelo , Árboles/fisiología , Agua , Clima , Geografía , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Estados Unidos
11.
Oecologia ; 142(2): 261-73, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15549405

RESUMEN

Knowledge of how leaf characteristics might be used to deduce information on ecosystem functioning and how this scaling task could be done is limited. In this study, we present field data for leaf lifespan, specific leaf area (SLA) and mass and area-based leaf nitrogen concentrations (N(mass), N(area)) of dominant tree species and the associated stand foliage N-pool, leaf area index (LAI), root biomass, aboveground biomass, net primary productivity (NPP) and soil available-N content in six undisturbed forest plots along subtropical to timberline gradients on the eastern slope of the Gongga Mountains. We developed a methodology to calculate the whole-canopy mean leaf traits to include all tree species (groups) in each of the six plots through a series of weighted averages scaled up from leaf-level measurements. These defined whole-canopy mean leaf traits were equivalent to the traits of a leaf in regard to their interrelationships and altitudinal trends, but were more useful for large-scale pattern analysis of ecosystem structure and function. The whole-canopy mean leaf lifespan and leaf N(mass) mainly showed significant relationships with stand foliage N-pool, NPP, LAI and root biomass. In general, as elevation increased, the whole-canopy mean leaf lifespan and leaf N(area) and stand LAI and foliage N-pool increased to their maximum, whereas the whole-canopy mean SLA and leaf N(mass) and stand NPP and root biomass decreased from their maximum. The whole-canopy mean leaf lifespan and stand foliage N-pool both converged towards threshold-like logistic relationships with annual mean temperature and soil available-N variables. Our results are further supported by additional literature data in the Americas and eastern China.


Asunto(s)
Ecosistema , Ambiente , Nitrógeno/metabolismo , Hojas de la Planta/fisiología , Árboles , Biomasa , Longevidad , Hojas de la Planta/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Temperatura , Tibet
12.
Oecologia ; 114(3): 389-404, 1998 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28307783

RESUMEN

Although there is a great deal of information concerning responses to increases in atmospheric CO2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO2. In this study, we analyze the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In TEM, the NPP response to doubled CO2 is controlled by increased carboxylation which is modified by canopy conductance and the degree to which nitrogen constraints cause down-regulation of photosynthesis. The implementation of these different mechanisms has consequences for the spatial pattern of NPP responses, and represents, in part, conceptual uncertainty about controls over NPP responses. Progress in reducing these uncertainties requires research focused at the ecosystem level to understand how interactions between the carbon, nitrogen, and water cycles influence the response of NPP to elevated atmospheric CO2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...