Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
ACS Nano ; 18(20): 13241-13248, 2024 May 21.
Article En | MEDLINE | ID: mdl-38718159

One-dimensional (1D) systems have played a crucial role in the development of fundamental physics and practical applications. Recently, transition metal monochalcogenide (TMM) wires based on molybdenum (Mo) and tungsten (W) have emerged as promising platforms for investigating 1D physics in pure van der Waals (vdW) platforms. Here, we report on the bottom-up fabrication of Nb6Te6 wires down to the single-wire limit. The unique properties of Nb6Te6 single wire enable the realization of 1D charge density wave (CDW) phases in an isolated single TMM wire. Moreover, we revealed the appealing regulation of 1D CDW orders by van der Waals interactions at either the 1D-2D interface (i.e., rotation of a single wire along its wire axis) or the 1D-1D interface. Two rotation angles (30° and 0°) give rise to 3 × 1 and zigzag chain CDW morphologies, respectively, which exhibit pronounced differences in atomic displacement by a factor of 2. The interwire vdW coupling overwhelms its counterpart at the 1D-2D interface, thus locking the rotation angle (at 0°) as well as the interwire atomic registries. In contrast, interestingly, the phases of the charge oscillations are independent of the adjacent wires. The ability to tailor 1D charge orders provides a crucial addition to the toll set of vdW integrations beyond two-dimensional materials.

2.
J Cancer ; 15(11): 3338-3349, 2024.
Article En | MEDLINE | ID: mdl-38817860

The infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is one of the most common causes of death in AIDS patients. Our studies have found that KSHV can infect SH-SY5Y cells (named SK-RG) in vivo and mTOR was up-regulated, which results in remarkable enhancement of cell proliferation, migration. But the regulatory role of mTOR in KSHV infected neurons has not yet been fully elucidated. Here, we find that miR-769-3p is decreased in SK-RG cells, which can exert anti-KSHV effect through negatively regulating the expression of mTOR. The knockdown of mTOR or overexpress of miR-769-3p decreased the proliferation, migration ability and cell cycle related protein of SK-RG cells, and the expression of KSHV related genes. In contrast, activating mTOR function by 3BDO treatment weakened the cellular behaviors of miR-769-3p overexpressing cells. Meanwhile, overexpressed miR-769-3p and rapamycin showed a shared inhibition trend in the effects on cell proliferation and motility. Our data indicated that miR-769-3p can inhibit cell proliferation and migration by down regulating mTOR in KSHV infected SH-SY5Y cells, and can be a candidate molecule for anti-KSHV therapy.

3.
Curr Mol Pharmacol ; 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38258595

BACKGROUND: This study aimed to investigate the influence of Notch1 on c-Fos and the effect of c-Fos on the proliferation of Kaposi's sarcoma-associated herpesvirus (KSHV)-infected neuronal cells. METHODS: Real-time PCR and western blotting were used to determine c-Fos expression levels in KSHV-infected (SK-RG) and uninfected SH-SY5Y cells. C-Fos levels were measured again in SK-RG cells with or without Notch1 knockdown. Next, we measured c-Fos and p-c-Fos concentrations after treatment with the Notch1 γ-secretase inhibitor LY-411575 and the Notch1 activator Jagged-1. MTT and Ki-67 staining were used to evaluate the proliferation ability of cells after c-Fos levels downregulation. CyclinD1, CDK6, and CDK4 expression levels and cell cycle were analyzed by western blotting and flow cytometry, respectively. After the c-Fos intervention, the KSHV copy number and gene expression of RTA, LANA and K8.1 were analyzed by real-time TaqMan PCR. RESULTS: C-Fos was up-regulated in KSHV-infected SK-RG cells. However, the siRNA-mediated knockdown of Notch1 resulted in a significant decrease in the levels of c-Fos and p-c-Fos (P <0.01, P <0.001). Additionally, a decrease in Cyclin D1, CDK6, and CDK4 was also detected. The Notch1 inhibitor LY-411575 showed the potential to down-regulate the levels of c-Fos and p-c-Fos, which was consistent with Notch1 knockdown group (P <0.01), whereas the expression and phosphorylation of c-Fos were remarkably up-regulated by treatment of Notch1 activator Jagged-1 (P <0.05). In addition, our data obtained by MTT and Ki-67 staining revealed that the c-Fos down-regulation led to a significant reduction in cell viability and proliferation of the SK-RG cells (P <0.001). Moreover, FACS analysis showed that the cell cycle was arrested in the G0/G1 stage, and the expressions of Cyclin D1, CDK6, and CDK4 were down-regulated in the c-Fos-knockdown SK-RG cells (P <0.05). Reduction in total KSHV copy number and expressions of viral genes (RTA, LANA and K8.1) were also detected in c-Fos down-regulated SK-RG cells (P <0.05). CONCLUSION: Our findings strongly indicate that c-Fos plays a crucial role in the promotion of cell proliferation through Notch1 signaling in KSHV-infected cells. Furthermore, our results suggest that the inhibition of expression of key viral pathogenic proteins is likely involved in this process.

4.
BMC Cancer ; 23(1): 853, 2023 Sep 11.
Article En | MEDLINE | ID: mdl-37697257

BACKGROUND: Cervical cancer is a common gynecological malignancy. Gene microarray found that TCP11 gene was highly expressed in cervical cancer. However, the effect of TCP11 gene on the proliferation, apoptosis and migration of cervical cancer cells and its underlying molecular mechanisms are unclear. METHODS: GEPIA database, tissue microarray, western blot and qRT-PCR were used to analyze the expression of TCP11 gene in cervical cancer tissues and cells and its relationship with patients' survival rate. The cell cycle and apoptosis were detected by flow cytometry, and the expressions of cell cycle and apoptosis related molecules and EMT-related molecules were detected by Western blot and qRT-PCR. RESULTS: The results showed that TCP11 gene was highly expressed in cervical cancer tissues and cells compared with normal cervical tissues and cells, and its expression was positively correlated with patients' survival rate. The results of proliferation and migration assays showed that TCP11 overexpression inhibited the proliferation and migration of HeLa and SiHa cells. The results showed that TCP11 overexpression blocked the cell cycle of HeLa and SiHa cells, decreased the expression of CDK1 and Cyclin B1, and increased the apoptosis and the expression of caspase-3, cleaved-caspase-3 and cleaved-PARP. TCP11 overexpression increased the protein and mRNA expression of EMT-related molecules ZO-1 and E-cadherin. Conversely, TCP11 knockdown promoted the proliferation of HeLa and SiHa cells and the migration of HeLa cells. CONCLUSIONS: TCP11 overexpression significantly inhibited the occurrence and development of cervical cancer cells, it may be a potentially beneficial biomarker for cervical cancer.


Membrane Proteins , Uterine Cervical Neoplasms , Female , Humans , Apoptosis/genetics , Caspase 3 , Cell Division , Gene Expression , HeLa Cells , Uterine Cervical Neoplasms/genetics , Membrane Proteins/genetics
5.
Nano Lett ; 23(6): 2107-2113, 2023 Mar 22.
Article En | MEDLINE | ID: mdl-36881543

Layered transition-metal dichalcogenides down to the monolayer (ML) limit provide a fertile platform for exploring charge-density waves (CDWs). Here, we experimentally unveil the richness of the CDW phases in ML-NbTe2 for the first time. Not only the theoretically predicted 4 × 4 and 4 × 1 phases but also two unexpected 28×28 and 19×19 phases are realized. For such a complex CDW system, we establish an exhaustive growth phase diagram via systematic efforts in the material synthesis and scanning tunneling microscope characterization. Moreover, the energetically stable phase is the larger-scale order (19×19), which is surprisingly in contradiction to the prior prediction (4 × 4). These findings are confirmed using two different kinetic pathways: i.e., direct growth at proper growth temperatures (T) and low-T growth followed by high-T annealing. Our results provide a comprehensive diagram of the "zoo" of CDW orders in ML-NbTe2.

6.
Medicine (Baltimore) ; 102(2): e32559, 2023 Jan 13.
Article En | MEDLINE | ID: mdl-36637958

OBJECTIVE: To explore and analyze the expression of eukaryotic translation elongation factor 1 alpha 2 (eEF1A2) gene in cervical cancer tissues, its relationship with patient survival, gene mutations, and changes in copy number in cervical cancer and chronic cervicitis tissues. METHODS: The expression of the eEF1A2 gene in cervical cancer and its relationship with patient survival were analyzed using gene expression profile interactive analysis. Changes in eEF1A2 expression in cervical cancer tissues were analyzed using cBioPortal, a portal for cancer genomics analysis. The eEF1A2 copy number in cervical cancer tissues and chronic cervicitis tissues was determined by real-time fluorescence quantitative polymerase chain reaction. The relationship between the expression of eEF1A2 protein and the clinical stage, pathological grade, and patient survival of cervical cancer was analyzed by the database: The Human Protein Atlas, an integrated repository portal for tumor-immune system interactions. RESULTS: Gene expression profile interactive analysis database analysis showed no significant differences in the expression of eEF1A2 between cervical cancer and normal cervical tissues (P > .05). The eEF1A2 gene expression level was not correlated with the survival of cervical cancer patients (P > .05). Analysis of the cBioPortal database showed that 18 of 297 cervical cancer patients had eEF1A2 gene changes, including missense mutation, splice mutation, amplification, and messenger RNA increase. There was no significant difference in eEF1A2 gene copy number between cervical cancer and chronic cervicitis (P > .05). The Human Protein Atlas and an integrated repository portal for tumor-immune system interactions database analysis of immunohistochemical data showed that eEF1A2 protein expression was no significant difference in clinical stage, pathological grade and patient survival of cervical cancer (P > .05). CONCLUSION: The eEF1A2 gene was mutated in cervical cancer tissues. The eEF1A2 gene copy number was not associated with changes in the expression of the eEF1A2 gene in cervical cancer tissues.


Gene Dosage , Peptide Elongation Factor 1 , Uterine Cervical Neoplasms , Uterine Cervicitis , Female , Humans , Gene Expression , Mutation, Missense , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervicitis/genetics
7.
Arch Virol ; 168(2): 39, 2023 Jan 07.
Article En | MEDLINE | ID: mdl-36609933

The disease caused by Kaposi's sarcoma-associated herpesvirus (KSHV) is one of the major causes of death of individuals with acquired immunodeficiency syndrome (AIDS). Development of anti-KSHV drugs is thus crucial. In this study, we investigated the effect of parthenolide (PTL) on the proliferation and NF-κB signaling pathway of KSHV-infected cells. iSLK.219 and KSHV-infected SH-SY5Y cells (SK-RG) were treated with PTL, TaqMan real-time quantitative PCR was used to determine the number of copies of the KSHV genome, and mRNA and protein expression of KSHV genes were analyzed by real-time PCR and immunocytochemistry. A cell viability test was used to measure cell proliferation, and flow cytometry was used to examine the effect of the drug on the cell cycle. Cyclin D1, CDK6, CDK4, and NF-κB-related proteins, including IKKß, P-p65, and P-IKB-α, were detected by Western blot. The results showed that PTL altered the morphology of the cells, reduced the KSHV copy number, and suppressed the production of ORF50, K8.1, and v-GPCR mRNA and the LANA, ORF50, and K8.1 proteins. It blocked the G1 phase in iSLK.219 cells and decreased the levels of cyclin D1, CDK6, and CDK4 as well as the levels of NF-κB signaling proteins, including IKKß, P-p65, and P-IKB-α. Together, these results suggest that PTL is a candidate drug that can decrease KSHV pathogenicity by suppressing cell proliferation and inhibiting the NF-κB signaling pathway in KSHV-infected cells.


Herpesvirus 8, Human , Neuroblastoma , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Sarcoma, Kaposi/drug therapy , Sarcoma, Kaposi/genetics , Cyclin D1/metabolism , I-kappa B Kinase/metabolism , Signal Transduction , Cell Proliferation , RNA, Messenger/metabolism
8.
BMC Cancer ; 23(1): 79, 2023 Jan 24.
Article En | MEDLINE | ID: mdl-36694148

BACKGROUND: Cervical cancer is currently estimated to be the fourth most common cancer among women worldwide and the leading cause of cancer-related deaths in some of the world's poorest countries. C/EBPß has tumor suppressor effects because it is necessary for oncogene-induced senescence. However, C/EBPß also has an oncogenic role. The specific role of C/EBPß in cervical cancer as a tumor suppressor or oncoprotein is unclear. OBJECTIVE: To explore the role of the C/EBPß protein in cervical tumorigenesis and progression. METHODS: Quantitative RT-PCR was used to analyze C/EBPß (15 cervical cancer tissue samples and 15 corresponding normal cervical tissue samples), miR-661, and MTA1 mRNA expression in clinical samples (10 cervical cancer tissue samples and 10 corresponding normal cervical tissue samples). Immunohistochemistry was used to analyze C/EBPß (381 clinical samples), Ki67 (80 clinical samples) and PCNA ( 60 clinical samples) protein expression. MALDI-TOF MassARRAY was used to analyze C/EBPß gene methylation (13 cervical cancer tissues and 13 corresponding normal cervical tissues). Cell proliferation was analyzed by CCK-8 in cervical cancer cell lines. Western blotting and immunohistochemistry were performed to detect C/EBPß protein expression levels, and mRNA expression was analyzed by quantitative RT-PCR analysis. Flow cytometry was performed to measure cell cycle distribution and cell apoptosis. Colony formation, Transwell, cell invasion, and wound healing assays were performed to detect cell migration and invasion. RESULTS: C/EBPß protein expression was significantly reduced in cervical cancer tissues compared with cervicitis tissues (P < 0.01). Ki67 protein and PCNA protein expression levels were significantly higher in cervical cancer tissues compared with cervicitis tissues. The rate of C/EBPß gene promoter methylation of CpG12, 13, 14 and CpG19 in cervical cancer tissues was significantly increased compared with normal cervical tissue (P < 0.05). In addition, C/EBPß was overexpressed in cervical cancer cells and this overexpression inhibited cell proliferation, migration, invasion, arrested cells in S phase, and promoted apoptosis. CONCLUSIONS: We have demonstrated that C/EBPß decreased in cervical cancer tissues and overexpression of the C/EBPß gene in cervical cancer cells could inhibit proliferation, invasion and migration.


MicroRNAs , Uterine Cervical Neoplasms , Uterine Cervicitis , Female , Humans , Carcinogenesis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Ki-67 Antigen/metabolism , MicroRNAs/genetics , Proliferating Cell Nuclear Antigen/metabolism , Repressor Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Trans-Activators/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervicitis/genetics
9.
Nano Lett ; 22(17): 7261-7267, 2022 Sep 14.
Article En | MEDLINE | ID: mdl-35993689

Recent findings of two-dimensional ferroelectric (FE) materials have enabled the integration of nonvolatile FE functions into device applications based on van der Waals (vdW) heterojunctions (HJs), resulting in versatile technological advances. In this paper, we report the results of direct probing of the electronic structures of In2Se3/WSe2 heterostructures at the single-layer limit, where monolayer (ML)-In2Se3 was found to be either antiferroelectric (AFE, ß') or ferroelectric (ß*) at sufficiently low temperatures. A general type-II band alignment was revealed for this heterostructure. Moreover, we observed significant modulations of the valley structures of WSe2, and in situ transformations between the FE and AFE In2Se3 phases demonstrated the dominant role of the polarizations in the top ML-In2Se3 layer. The observed phenomena can be attributed to the combination of both the linear and quadratic Stark shifts from the out-of-plane electric field, which has only been previously theoretically explored for ML-transition metal dichalcogenides (TMDs).

10.
PeerJ ; 10: e13233, 2022.
Article En | MEDLINE | ID: mdl-35444864

Background: We aimed to investigate the effects of miR-34a-5p on c-fos regulation mediating the malignant behaviors of SH-SY5Y cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV). Methods: The KSHV-infected (SK-RG) and uninfected SH-SY5Y parent cells were compared for differentially expressed miRNAs using transcriptome sequencing. Then miR-34a-5p was upregulated in SK-RG cells by the miRNA mimics transfection. Cell proliferation ability was determined by MTT and plate clone assays. The cell cycle was assessed by flow cytometry analysis, and CDK4, CDK6, cyclin D1 levels were determined by Western blot analysis. The migration behavior was detected by wound healing and transwell assays. The protein levels of MMP2 and MMP9 were measured by Western blot analysis. The regulation of c-fos by miR-34a-5p was detected by the dual-luciferase reporter gene assay. Rescue assays were carried out by upregulating c-fos in miR-34a-5p-overexpressing SK-RG cells. KSHV DNA copy numbers and relative virus gene expressions were detected. Xenograft tumor experiments and immunohistochemistry assays were further used to detect the effects of miR-34a-5p. Results: miR-34a-5p was lower in SK-RG cells. Restoration of miR-34a-5p decreased cell proliferation and migration, leading to a G1 cell cycle arrest and down-regulation of CDK4/6, cyclin D1, MMP2, MMP9. KSHV copy number and expression of virus gene including latency-associated nuclear antigen (LANA), replication and transcription activator (RTA), open reading frame (K8.1), and KSHV G protein-coupled receptor (v-GPCR) were also reduced. Furthermore, c-fos is the target of miR-34a-5p, while enhanced c-fos weakened cellular behaviors of miR-34a-5p-overexpressing cells. Xenograft experiments and immunohistochemistry assays showed that miR-34a-5p inhibited tumor growth and virus gene expression. Conclusion: Upregulated miR-34a-5p in KSHV-infected SH-SY5Y cells suppressed cell proliferation and migration through down-regulating c-fos. miR-34a-5p was a candidate molecular drug for KSHV-infected neuronal cells.


Herpesvirus 8, Human , MicroRNAs , Neuroblastoma , Humans , Cyclin D1 , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , MicroRNAs/genetics , Animals
11.
Cancer Cell Int ; 22(1): 94, 2022 Feb 22.
Article En | MEDLINE | ID: mdl-35193568

BACKGROUND: To investigate the genotype distribution of human papillomavirus (HPV) in infected Uygur and Han women in Xinjiang, China; analyze the HPV16 E6 gene polymorphism site and relationship with the development of cervical cancer. METHODS: The HPV16 E6 sequence was analyzed using the European standard prototype to perform an evolutionary tree. HPV16 E6-T295/T350, G295/G350, and T295/G350 GV230 vectors were stably transfected into cervical cancer C33A cells to analyze the cell proliferation, migration and invasion, apoptosis by CCK8 and clonogenic assays, transwell and cell scratch assays, FACS experiments. RESULTS: The total HPV infection rate was 26.390% (760/2879), whereas the Uygur 22.87% (196/857) and the Han was 27.89% (564/2022) (P < 0.05). Among 110 mutations, 65 cases of E6 genes were mutated at nucleotide 350 (T350G) with the leucine changing to valine (L83V). Moreover, there were 7 cases of E6 gene mutated at nucleotide 295 (T295G) with aspartic changing to glutamic (D64E). When E6 vector(s) of mutations sites were transfected into C33A cells, they were found to promote cellular proliferation, migration, invasion, and inhibit apoptosis. T295/G350-E6 was significantly stronger than G295/G350 and T295/T350, G295/G350 was significantly stronger than T295/T350 (P < 0.05). The T295/G350 had the strongest effect on C33A cells and G295/G350 was significantly stronger than T295/T350 (P < 0.05). CONCLUSIONS: The positive HPV infection rates differed between the Uygur and Han in Xinjiang, China, and the genotype distribution of infection was different. After transfecting C33A cells with different eukaryotic expression vectors, the T295/G350 mutation site promoted the proliferation, migration, and invasion of C33A cells to a greater extent than G295/G350; however, G295/G350 had a stronger effect than T295/T350.

12.
BMC Med Genomics ; 14(1): 268, 2021 11 12.
Article En | MEDLINE | ID: mdl-34772425

BACKGROUND: Xinjiang is one of the regions with a high incidence of cervical cancer, and the genetic variation of human papillomavirus may increase its ability to infect the human body and enhance virus-mediated immune escape ability. METHODS: Sanger sequencing of the HPV16 genome from 165 samples positive for HPV16 infection and phylogenetic analysis of the E1 and E2 genes revealed the gene polymorphism of HPV16 in Xinjiang. RESULTS: The results showed that there were 109 samples with variations in HPV16 E1, 48 sites with nucleotide variations (19 missense variations and 29 synonymous variations), and 91 samples with variations in HPV16 E2, 25 sites with nucleotide variations (20 missense variations and five synonymous variations). CONCLUSIONS: From the phylogenetic tree results, 149 samples were of the European variant and 16 samples were of the Asian variant. No African or North American/Asian variant types were found.


DNA-Binding Proteins/genetics , Genetic Variation , Human papillomavirus 16/genetics , Oncogene Proteins, Viral/genetics , Papillomavirus Infections/virology , Uterine Cervical Neoplasms/virology , China/epidemiology , Female , Humans , Incidence , Phylogeny , Uterine Cervical Neoplasms/epidemiology
13.
Cancer Cell Int ; 21(1): 577, 2021 Oct 30.
Article En | MEDLINE | ID: mdl-34717617

BACKGROUND: The cancer caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection is one of the major causes of death in AIDS patients. Some patients have neurological symptoms, which appear to be associated with KSHV infection, based on the neurotropic tendency of this virus in recent years. The objectives of this study were to investigate the effects of KSHV infection on neuronal SH-SY5Y cells and to identify differentially expressed genes. METHODS: KSHV was collected from islk.219 cells. Real-time PCR was used to quantify KSHV copy numbers. KSHV was used to infect SH-SY5Y cells. The KSHV copy number in the supernatants and mRNA levels of latency-associated nuclear antigen (LANA), ORF26, K8.1 A, and replication and transcriptional activator (RTA) were detected by real-time PCR. Proteins were detected by immunohistochemistry. The effect of KSHV infection on cell proliferation was detected by MTT and Ki-67 staining. Cell migration was evaluated by Transwell and wound healing assays. The cell cycle was analyzed by flow cytometry. The expression of CDK4, CDK5, CDK6, cyclin D1, and p27 were measured by western blotting. The levels of cell cycle proteins were re-examined in LANA-overexpressing SH-SY5Y cells. Transcriptome sequencing was used to identify differentially expressed genes in KSHV-infected cells. The levels of Notch signaling pathway proteins were measured by western blotting. RNA interference was used to silence Notch1 and proliferation were analyzed again. RESULTS: SH-SY5Y cells were successfully infected with KSHV, and they maintained the ability to produce virions. KSHV-infected SH-SY5Y expressed LANA, ORF26, K8.1 A, and RTA. After KSHV infection, cell proliferation was enhanced, but cell migration was suppressed. KSHV infection accelerated the G0/G1 phase. CDK4, CDK5, CDK6, and cyclin D1 expression was increased, whereas p27 expression was decreased. After LANA overexpression, CDK4, CDK6 and cyclin D1 expression was increased. Transcriptome sequencing showed that 11,258 genes were upregulated and 1,967 genes were downregulated in KSHV-infected SH-SY5Y. The Notch signaling pathway played a role in KSHV infection in SH-SY5Y, and western blots confirmed that Notch1, NICD, RBP-Jĸ and Hes1 expression was increased. After silencing of Notch1, the related proteins and cell proliferation ability were decreased. CONCLUSIONS: KSHV infected SH-SY5Y cells and promoted the cell proliferation. KSHV infection increased the expression of Notch signaling pathway proteins, which may have been associated with the enhanced cell proliferation.

14.
Onco Targets Ther ; 14: 403-411, 2021.
Article En | MEDLINE | ID: mdl-33488095

INTRODUCTION: The aim of this study was to determine whether ZNF582 gene methylation and tissue protein expression can be used as a tool with high sensitivity and specificity for cervical cancer screening. We analyzed the correlation between promoter methylation of ZNF582 gene and cervical cancer and high risk HPV16/18 infection. METHODS: Tissue samples of normal cervical or chronic cervicitis (n=51), CIN (cervical intraepithelial neoplasia) (n=35), and cervical carcinoma (n=68) were tested for HPV16/18 infection by polymerase chain reaction (PCR). We also detected the methylation status of the ZNF582 gene promoter in the same tissues by methylation-specific PCR (MSP), then analyzed the correlation between ZNF582 promoter methylation and HPV16/18 infection. Immunohistochemistry was used to analyze ZNF582 gene expression in 152 cervical tissues. We detected ZNF582 mRNA expression in cervical tissues (including cancer and non-cancer) by real-time fluorescence quantitative PCR (qPCR). RESULTS: Among 93 high-grade cervical lesions (CINII and above) and cervical cancer samples, 57 cases were positive for HPV16/18 infection and 36 cases were negative. ZNF582 gene methylation occurred in 9 out of 51 cases in normal cervical tissues (17.6%), 16 of 35 cases in CIN tissues (45.7%), and 50 of 68 cases in cervical cancer (73.5%). The differences in methylation rate of the three groups were statistically significant (P<0.05). The ZNF582 methylation rate in the positive HPV16/18 infection group was 73.7%, while the negative group was 63.9%. Compared with normal tissues, ZNF582 protein was highly expressed in cervical cancer tissues, but mRNA expression was low. CONCLUSION: While ZNF582 protein is highly expressed in cervical cancer tissues, it was not sufficient for use as a standard for cervical cancer staging. On the other hand, ZNF582 promoter methylation had high specificity and sensitivity in detecting CINII and highly diseased cervical lesions and could be used as a diagnostic marker for cervical cancer of women.

15.
Aging (Albany NY) ; 13(2): 2681-2699, 2020 12 15.
Article En | MEDLINE | ID: mdl-33323541

Acute ischemia-reperfusion (IR)-induced brain injury is further exacerbated by a series of slower secondary pathogenic events, including delayed apoptosis due to neurotrophic factor deficiency. Neuritin, a neurotrophic factor regulating nervous system development and plasticity, is a potential therapeutic target for treatment of IR injury. In this study, Neuritin-overexpressing transgenic (Tg) mice were produced by pronuclear injection and offspring with high overexpression used to generate a line with stable inheritance for testing the neuroprotective capacity of Neuritin against transient global ischemia (TGI). Compared to wild-type mice, transgenic mice demonstrated reduced degradation of the DNA repair factor poly [ADP-ribose] polymerase 1 (PARP 1) in the hippocampus, indicating decreased hippocampal apoptosis rate, and a greater number of surviving hippocampal neurons during the first week post-TGI. In addition, Tg mice showed increased expression of the regeneration markers NF-200, synaptophysin, and GAP-43, and improved recovery of spatial learning and memory. Our findings exhibited that the window of opportunity of neural recovery in Neuritin transgenic mice group had a tendency to move ahead after TGI, which indicated that Neuritin can be used as a potential new therapeutic strategy for improving the outcome of cerebral ischemia injury.


Brain Regeneration/genetics , Brain/physiopathology , Memory , Neurons/metabolism , Neuropeptides/genetics , Reperfusion Injury/physiopathology , Spatial Learning , Animals , Apoptosis , Brain/blood supply , Brain/metabolism , Carotid Artery, Common , Cell Survival , Female , GAP-43 Protein/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Male , Mice , Mice, Transgenic , Morris Water Maze Test , Neurofilament Proteins/metabolism , Neuropeptides/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , RNA, Messenger/metabolism , Rats , Recovery of Function , Reperfusion Injury/metabolism , Synaptophysin/metabolism
16.
Nano Lett ; 20(12): 8866-8873, 2020 Dec 09.
Article En | MEDLINE | ID: mdl-33227207

Stacking of two-dimensional (2D) van der Waals (vdW) atomic sheets has been established as a powerful approach to fabricating new materials with broad versatilities and emergent functionalities. Here we demonstrate a bottom-up approach to fabricating isolated single W6Te6 wires and their lateral assemblies, offering a unique platform for investigating the elegant role of vdW coupling in 1D systems with atomic precision. We find experimentally and theoretically a single W6Te6 wire is a 1D semiconductor with a band gap of ∼60 meV, and a semiconductor-to-metal transition takes place upon interwire vdW stacking. The metallic multiwires exhibit strong Tomonaga-Luttinger liquid characteristics with the correlation parameter g varying from g = 0.086 for biwire to g = 0.136 for six-wire assemblies, all much reduced from the Fermi liquid regime (g = 1). The present study demonstrates wire-by-wire vdW stacking is a versatile means for fabrication of 1D systems with tunable electronic properties.

17.
Cancer Cell Int ; 19: 65, 2019.
Article En | MEDLINE | ID: mdl-30930693

BACKGROUND: Xinjiang is one of the areas with the highest incidence of cervical cancer in China. Genetic variation in Human papillomavirus type 16 (HPV16) may increase the ability of the virus to mediate carcinogenesis and immune escape, which are risk factors for the progression of cervical cancer. We investigated polymorphism in HPV16 and the distribution of its sub-lineages in the region by analyzing the E6, E7 and long control region (LCR) gene sequences from women with HPV16-positive cervical samples in Xinjiang. METHODS: A total of 138 cases of cervical lesions and squamous cell carcinoma with infection of HPV16 virus were collected. The E6 and E7 genes and LCR of HPV16 virus were sequenced and compared with the HPV16 European prototype reference and other HPV16 mutants for single nucleotide polymorphisms. Neighbor-joining phylogenetic trees were constructed using E6, E7 and LCR sequences. RESULTS: Fourteen missense mutations were found in the E6 gene; the loci with the highest mutation frequency were T350G (36/75, 48%) and T178G (19/75, 25.3%). In the E7 gene, the locus with the highest mutation frequency was A647G (18/75, 24%). A total of 33 polymorphic sites were found in the LCR, of which T7447C (39/95, 40.1%) was the most frequent. CONCLUSION: HPV16 in Xinjiang is mainly of the European variant, followed by the Asian variant type; no Africa 1, 2 or Asia-America variant types were found.

18.
Sci Rep ; 9(1): 3468, 2019 03 05.
Article En | MEDLINE | ID: mdl-30837516

We investigated the infection status and genotype distribution of human papillomavirus (HPV) in women of different ages and various ethnic groups in the Yili region, Xinjiang, China. We checked the HPV genotypes of 3,445 samples of exfoliated cervical cells using the PCR-reverse dot blot method. The total infection rate of HPV was 25.60% (882/3,445). The ethnic stratification showed that the infection rates were 22.87% (196/857) in Uygur, 21.55% (122/566) in Kazak, and 27.89% (564/2,022) in Han individuals. The most prevalent high-risk genotypes were HPV16, HPV52, and HPV53 in Uygur and Kazak and HPV16, HPV52, and HPV58 in Han ethnic groups. The age stratification showed that the infection rates in Han, Uygur, and Kazak women were up to 40.9% (61/149) in those aged 26-30 years, 41.5% (22/53) in those over 61 years old, and 30.2% (29/96) in those 46-50 years old, respectively. Therefore, HPV infection and HPV genotype distribution varied among the different age groups of the three ethnic groups.


Cervix Uteri/virology , Ethnicity , Papillomaviridae , Papillomavirus Infections/epidemiology , Papillomavirus Infections/virology , China/epidemiology , China/ethnology , Cytological Techniques , Female , Genotype , Humans , Mass Screening , Papillomaviridae/genetics , Public Health Surveillance , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/etiology , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Dysplasia/epidemiology , Uterine Cervical Dysplasia/etiology
19.
Sci Rep ; 9(1): 548, 2019 01 24.
Article En | MEDLINE | ID: mdl-30679629

To analyze the level and diagnostic value of plasmacytoma variant translocation 1 (PVT1) in gastric cancer (GC) of Han and Uygur in Xinjiang, China, we collected 42 GC and 47 normal gastric tissues and performed tissue microarray. In situ hybridization was used to detect PVT1, while immunohistochemistry was used to analyze c-myc. The relationship between PVT1, c-myc and clinical pathological features was investigated. We then analyzed the expression of PVT1 in six GC cell lines. RNA interference was used to silence PVT1 in BGC823 and AGS cells. c-myc was detected by western blotting after silencing PVT1, while proliferation, invasion and migration ability were also analyzed. We found that PVT1 and c-myc were highly expressed in both Han and Uygur GC tissues. In Han GC, PVT1 was correlated with lymph node metastasis and primary tumor site. In Uygur GC, both PVT1 and c-myc were correlated with lymph node metastasis and clinical staging. PVT1 was positively correlated with c-myc. BGC823 and AGS cells exhibited high levels of PVT1. When PVT1 expression was silenced, the expression of c-myc decreased, while migration and invasion ability were also decreased in cells. PVT1 could therefore be a potential biomarker to predict the metastatic tendency of GC in both Han and Uygur patients.


Ethnicity , Lymphatic Metastasis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Stomach Neoplasms/ethnology , Stomach Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , China/epidemiology , China/ethnology , Female , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , In Situ Hybridization , Lymph Nodes/pathology , Male , Middle Aged , Prognosis , Proto-Oncogene Proteins c-myc/metabolism , RNA Interference , Stomach Neoplasms/epidemiology , Stomach Neoplasms/pathology
20.
Genet Mol Biol ; 41(1): 9-17, 2018.
Article En | MEDLINE | ID: mdl-29658966

This study aimed to explore: 1) DNA methylation in the promoter regions of Wilms tumor gene 1 (WT1), NK6 transcription factor related locus 1 gene (NKX6-1) and Deleted in bladder cancer 1 (DBC1) gene in cervical cancer tissues of Uygur women in Xinjiang, and 2) the correlation of gene methylation with the infection of HPV16/18 viruses. We detected HPV16/18 infection in 43 normal cervical tissues, 30 cervical intraepithelial neoplasia lesions (CIN) and 48 cervical cancer tissues with polymerase chain reaction (PCR) method. Methylation in the promoter regions of the WT1, NKX6-1 and DBC1 genes in the above-mentioned tissues was measured by methylation-specific PCR (MSP) and cloning sequencing. The expression level of these three genes was measured by real-time PCR (qPCR) in 10 methylation-positive cervical cancer tissues and 10 methylation-negative normal cervical tissues. We found that the infection of HPV16 in normal cervical tissues, CIN and cervical cancer tissues was 14.0, 36.7 and 66.7%, respectively. The infection of HPV18 was 0, 6.7 and 10.4%, respectively. The methylation rates of WT1, NKX6-1 and DBC1 genes were 7.0, 11.6 and 23.3% in normal cervical tissues, 36.7, 46.7 and 30.0% in CIN tissues, and 89.6, 77.1 and 85.4% in cervical cancer tissues. Furthermore, WT1, NKX6-1 and DBC1 genes were hypermethylated in the high-grade squamous intraepithelial lesion (CIN2, CIN3) and in the cervical cancer tissues with infection of HPV16/18 (both P< 0.05). The expression of WT1, NKX6-1 and DBC1 was significantly lower in the methylation-positive cervical cancer tissues than in methylation-negative normal cervical tissues. Our findings indicated that methylation in the promoter regions of WT1, NKX6-1 and DBC1 is correlated with cervical cancer tumorigenesis in Uygur women. The infection of HPV16/18 might be correlated with methylation in these genes. Gene inactivation caused by methylation might be related to the incidence and development of cervical cancer.

...