Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38930665

RESUMEN

Bubble flow in confined geometries is a problem of fundamental and technological significance. Among all the forms, bubble breakup in bifurcated microchannels is one of the most commonly encountered scenarios, where an in-depth understanding is necessary for better leveraging the process. This study numerically investigates the non-uniform breakup of a bubble slug in Y-shaped microchannels under different flow ratios, Reynolds numbers, and initial bubble volumes. Overall, the bubble can either breakup or non-breakup when passing through the bifurcation and shows different forms depending on flow regimes. The flow ratio-Reynolds number phase diagrams indicate a power-law transition line of breakup and non-breakup. The bubble takes longer to break up with rising flow ratios yet breaks earlier with higher Reynolds numbers and volumes. Non-breakup takes less time than the breakup patterns. Flow ratio is the origin of non-uniform breakup. Both the Reynolds number and initial volume influence the bubble states when reaching the bifurcation and thus affect subsequent processes. Bubble neck dynamics are analyzed to describe the breakup further. The volume distribution after breaking up is found to have a quadratic relation with the flow ratio. Our study is hoped to provide insights for practical applications related to non-uniform bubble breakups.

2.
J Biomol Struct Dyn ; 38(16): 4733-4745, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31674290

RESUMEN

Cytochrome bcc complex is important for ATP synthesis and cellular activity, as a crucial step in the terminal reduction of oxygen in aerobic electron transport chains. The b subunit of cytochrome bcc complex (QcrB) has been reported as a promising anti-tuberculosis target, with many novel anti-tuberculosis scaffolds reported. However, the 3D structure of mycobacterium tuberculosis (M. tuberculosis) QcrB has not been released, making it hard to understand the interactions between QcrB and its inhibitors as well as to develop novel anti-tuberculosis scaffolds. Herein we built the optimal homology model of M. tuberculosis QcrB using the M. smegmatis QcrB structure as template, which was refined through all-atom molecular dynamics simulation. Then, the binding modes of known inhibitors were predicted through molecular docking method, along with molecular dynamics simulation and binding free energy calculation to verify the accuracy of docking results and stability of the protein-inhibitor complexes. The informative key residues within QcrB site enabled us to perform structure-based virtual library screening to obtain potential M. tuberculosis QcrB inhibitors, which were validated through molecular dynamics simulation and MM-GBSA calculation and analyzed through pharmacokinetic properties prediction. Our research would provide a deeper insight into the interactions between M. tuberculosis QcrB and its inhibitors, which boosts to develop novel therapy against tuberculosis.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Antituberculosos/farmacología , Citocromos b , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
3.
Natl Sci Rev ; 6(4): 758-766, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34691931

RESUMEN

Patterned materials on substrates are of great importance for a wide variety of applications. In solution-based approaches to material patterning, fluidic flow is inevitable. Here we demonstrate not only the importance of fluidic behavior but also the methodology of engineering the flow pattern to guide the material crystallization and assembly. We show by both experiment and simulation that substrate heating, which is generally used to accelerate evaporation, produces irregular complex vortexes. Instead, a top-heating-bottom-cooling (THBC) set-up offers an inverse temperature gradient and results in a single Marangoni vortex, which is desired for ordered nanomaterial patterning near the contact line. We then realize the fabrication of large-scale patterns of iodide perovskite crystals on different substrates under THBC conditions. We further demonstrate that harnessing the flow behavior is a general strategy with great feasibility to pattern various functional materials ranging from inorganic, organic, hybrid to biological categories on different substrates, presenting great potential for practical applications.

4.
Langmuir ; 30(32): 9726-30, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25105726

RESUMEN

Prediction and manipulation of the evaporation of small droplets is a fundamental problem with importance in a variety of microfluidic, microfabrication, and biomedical applications. A vapor-diffusion-based model has been widely employed to predict the interfacial evaporation rate; however, its scope of applicability is limited due to incorporation of a number of simplifying assumptions of the physical behavior. Two key transport mechanisms besides vapor diffusion-evaporative cooling and natural convection in the surrounding gas-are investigated here as a function of the substrate wettability using an augmented droplet evaporation model. Three regimes are distinguished by the instantaneous contact angle (CA). In Regime I (CA ≲ 60°), the flat droplet shape results in a small thermal resistance between the liquid-vapor interface and substrate, which mitigates the effect of evaporative cooling; upward gas-phase natural convection enhances evaporation. In Regime II (60 ≲ CA ≲ 90°), evaporative cooling at the interface suppresses evaporation with increasing contact angle and counterbalances the gas-phase convection enhancement. Because effects of the evaporative cooling and gas-phase convection mechanisms largely neutralize each other, the vapor-diffusion-based model can predict the overall evaporation rates in this regime. In Regime III (CA ≳ 90°), evaporative cooling suppresses the evaporation rate significantly and reverses entirely the direction of natural convection induced by vapor concentration gradients in the gas phase. Delineation of these counteracting mechanisms reconciles previous debate (founded on single-surface experiments or models that consider only a subset of the governing transport mechanisms) regarding the applicability of the classic vapor-diffusion model. The vapor diffusion-based model cannot predict the local evaporation flux along the interface for high contact angle (CA ≥ 90°) when evaporative cooling is strong and the temperature gradient along the interface determines the peak local evaporation flux.

5.
Langmuir ; 29(51): 15831-41, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24320680

RESUMEN

Evaporation rates are predicted and important transport mechanisms identified for evaporation of water droplets on hydrophobic (contact angle ~110°) and superhydrophobic (contact angle ~160°) substrates. Analytical models for droplet evaporation in the literature are usually simplified to include only vapor diffusion in the gas domain, and the system is assumed to be isothermal. In the comprehensive model developed in this study, evaporative cooling of the interface is accounted for, and vapor concentration is coupled to local temperature at the interface. Conjugate heat and mass transfer are solved in the solid substrate, liquid droplet, and surrounding gas. Buoyancy-driven convective flows in the droplet and vapor domains are also simulated. The influences of evaporative cooling and convection on the evaporation characteristics are determined quantitatively. The liquid-vapor interface temperature drop induced by evaporative cooling suppresses evaporation, while gas-phase natural convection acts to enhance evaporation. While the effects of these competing transport mechanisms are observed to counterbalance for evaporation on a hydrophobic surface, the stronger influence of evaporative cooling on a superhydrophobic surface accounts for an overprediction of experimental evaporation rates by ~20% with vapor diffusion-based models. The local evaporation fluxes along the liquid-vapor interface for both hydrophobic and superhydrophobic substrates are investigated. The highest local evaporation flux occurs at the three-phase contact line region due to proximity to the higher temperature substrate, rather than at the relatively colder droplet top; vapor diffusion-based models predict the opposite. The numerically calculated evaporation rates agree with experimental results to within 2% for superhydrophobic substrates and 3% for hydrophobic substrates. The large deviations between past analytical models and the experimental data are therefore reconciled with the comprehensive model developed here.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA