Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Sci Rep ; 13(1): 14445, 2023 09 02.
Article En | MEDLINE | ID: mdl-37660115

The presence or absence of spontaneous retinal venous pulsations (SVP) provides clinically significant insight into the hemodynamic status of the optic nerve head. Reduced SVP amplitudes have been linked to increased intracranial pressure and glaucoma progression. Currently, monitoring for the presence or absence of SVPs is performed subjectively and is highly dependent on trained clinicians. In this study, we developed a novel end-to-end deep model, called U3D-Net, to objectively classify SVPs as present or absent based on retinal fundus videos. The U3D-Net architecture consists of two distinct modules: an optic disc localizer and a classifier. First, a fast attention recurrent residual U-Net model is applied as the optic disc localizer. Then, the localized optic discs are passed on to a deep convolutional network for SVP classification. We trained and tested various time-series classifiers including 3D Inception, 3D Dense-ResNet, 3D ResNet, Long-term Recurrent Convolutional Network, and ConvLSTM. The optic disc localizer achieved a dice score of 95% for locating the optic disc in 30 milliseconds. Amongst the different tested models, the 3D Inception model achieved an accuracy, sensitivity, and F1-Score of 84 ± 5%, 90 ± 8%, and 81 ± 6% respectively, outperforming the other tested models in classifying SVPs. To the best of our knowledge, this research is the first study that utilizes a deep neural network for an autonomous and objective classification of SVPs using retinal fundus videos.


Deep Learning , Glaucoma , Optic Disk , Animals , Fundus Oculi , Optic Disk/diagnostic imaging , Abomasum , Glaucoma/diagnostic imaging
2.
SN Comput Sci ; 3(2): 169, 2022.
Article En | MEDLINE | ID: mdl-35224513

The COVID-19 diffused quickly throughout the world and converted as a pandemic. It has caused a destructive effect on both regular lives, common health and global business. It is crucial to identify positive patients as shortly as desirable to limit this epidemic's further diffusion and to manage immediately affected cases. The demand for quick assistant distinguishing devices has developed. Recent findings achieved utilizing radiology imaging systems propose that such images include salient data about the COVID-19. The utilization of progressive artificial intelligence (AI) methods linked by radiological imaging can help the reliable diagnosis of COVID-19. As radiography images can recognize pneumonia infections, this research brings an accurate and automatic technique based on a deep residual network to analyze chest X-ray images to monitor COVID-19 and diagnose verified patients. The physician states that it is significantly challenging to separate COVID-19 from common viral and bacterial pneumonia, while COVID-19 is additionally a variety of viruses. The proposed network is expanded to perform detailed diagnostics for two multi-class classification (COVID-19, Normal, Viral Pneumonia) and (COVID-19, Normal, Viral Pneumonia, Bacterial Pneumonia) and binary classification. By comparing the proposed network with the popular methods on public databases, the results show that the proposed algorithm can provide an accuracy of 92.1% in classifying multi-classes of COVID-19, normal, viral pneumonia, and bacterial pneumonia cases. It can be applied to support radiologists in verifying their first viewpoint.

...