Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Heliyon ; 10(5): e27363, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38495166

Mushrooms are traditionally used for various medicinal purposes in traditional oriental medicine. The Japanese and Chinese are familiar with the medicinal macro fungus Lentinula edodes (Shiitake mushroom). This study aims to evaluate the role of chemical compounds from L. edodes using network pharmacology and in-vitro studies for management of Obesity. Bioactive compounds in extracts of L. edodes were identified by GC-MS analysis. Compounds were later screened for their drug-like property by Lipinski's rule. In addition, public databases (SEA, STP, Omim and DisGenet) were searched to identify genes associated with selected molecules and obesity, as well as genes that overlap obesity target genes with genes related to L. edodes. Additionally, analysis was performed using Enrichr KG to predict the disease targets of L. edodes. Finally, network was constructed between the overlapping genes and bioactive molecules using Rstudio. Further in-vitro studies were carried out using 3T3-L1 cell line. The genes related to the selected compounds and obesity were identified and overlapped. The disease targets of L. edodes was predicted by enrichment analysis and was found to be linked to obesity. Furthermore, the hub gene was found to be fatty acid amide hydrolase, and the key bioactive compound was hexadecanoic acid methyl ester. The in-vitro cell culture studies confirmed the inhibition of adipogenesis in mushroom extract-treated 3T3-L1 cells and the augmentation of adiponectin. The study suggests that the hub gene fatty acid amide hydrolase might alleviate obesity by inhibiting arachidonoyl ethanolamide signaling, which would enhance the action of fatty acid amide hydrolase and limit appetite in L. edodes extract.

2.
Sci Rep ; 13(1): 16314, 2023 09 28.
Article En | MEDLINE | ID: mdl-37770520

Sediment contamination jeopardizes wetlands by harming aquatic organisms, disrupting food webs, and reducing biodiversity. Carcinogenic substances like heavy metals bioaccumulate in sediments and expose consumers to a greater risk of cancer. This study reports Pb, Cr, Cu, and Zn levels in sediments from eight wetlands in India. The Pb (51.25 ± 4.46 µg/g) and Cr (266 ± 6.95 µg/g) concentrations were highest in Hirakud, Cu (34.27 ± 2.2 µg/g) in Bhadrak, and Zn (55.45 ± 2.93 µg/g) in Koraput. The mean Pb, Cr, and Cu values in sediments exceeded the toxicity reference value. The contamination factor for Cr was the highest of the four metals studied at Hirakud (CF = 7.60) and Talcher (CF = 6.97). Furthermore, high and moderate positive correlations were observed between Cu and Zn (r = 0.77) and Pb and Cr (r = 0.36), respectively, across all sites. Cancer patients were found to be more concentrated in areas with higher concentrations of Pb and Cr, which are more carcinogenic. The link between heavy metals in wetland sediments and human cancer could be used to make policies that limit people's exposure to heavy metals and protect their health.


Metals, Heavy , Neoplasms , Water Pollutants, Chemical , Humans , Wetlands , Carcinogens/toxicity , Lead , Geologic Sediments , Environmental Monitoring , Metals, Heavy/toxicity , Metals, Heavy/analysis , Neoplasms/chemically induced , Risk Assessment , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , China
3.
Environ Monit Assess ; 195(8): 997, 2023 Jul 26.
Article En | MEDLINE | ID: mdl-37493963

In urban areas around the world, air pollution introduced by vehicular movement is a key concern. However, restricting vehicular traffic during the COVID-19 shutdown improved air quality to some extent. This study was conducted out in the smart city of Bhubaneswar, which is also the state capital of Odisha, India. The study has tried to map Bhubaneswar by collecting the air quality data before, during, and after the COVID lockdown of six air quality monitoring stations present in Bhubaneswar established under "National Ambient Air Monitoring Program" (NAMP). Furthermore, plants, which are the most vulnerable to air pollution, can show a variety of visible changes depending on their level of sensitivity. Moreover, leaves of Mangifera indica, Monoon longifolium, Azadirachta indica, Millettia pinnata, Aegle marmelos were collected from nearby of six air monitoring stations to assess the "Air Pollution Tolerance Index." M. indica was found to be intermediately tolerant, and all of the other species were found to be sensitive. The structural equation modeling results also revealed a significant relationship between total chlorophyll content, relative water content, ascorbic acid content, leaf extract pH, APTI with species, air quality index, and PM10.


Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Environmental Monitoring/methods , Communicable Disease Control , Air Pollution/analysis , Plants , Plant Leaves/chemistry
4.
Environ Sci Pollut Res Int ; 30(49): 107259-107280, 2023 Oct.
Article En | MEDLINE | ID: mdl-37462869

The soundscape study of an eastern Indian coastal city (Puri) has been investigated. Acoustic data were collected at 36 sampling locations during two time intervals in and around Puri. A number of noise indices, namely, Lmin, Lmax, and Leq, were calculated to demonstrate the noise level of this city. Noise maps are generated using ARC-GIS to investigate the impact of road traffic noise on the soundscape of the city. The response of the public was appraised by a questionnaire. Due to variable traffic features, the equivalent noise level (Leq) as well as peak (L10) and background noise (L90) levels varied with location and time of the day. It was found that socio-demographic characteristics have no bearing on the amount of annoyance. However, a link was observed between age, hearing condition, and noise perception, as well as between gender and impacts of noise.


Acoustics , Noise , Cities , India , Specimen Handling , Environmental Exposure
5.
Environ Pollut ; 330: 121796, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37169242

Metals are micropollutants that cannot be degraded by microorganisms and are infiltrated into various environmental media, including both freshwater and marine water. Metals from polluted water are absorbed by many aquatic species, especially fish. Fish is a staple food in the diets of many regions in the world; hence, both the type and concentration of metals accumulated and transferred from contaminated water sources to fish must be determined and assessed. In this study, the heavy metal concentration was determined and assessed in fish collected from freshwater sources via published literature and Estimated Daily Intake (EDI), Target hazard quotient (THQ), and Carcinogenic Risk (CR) analyses, aiming to examine the metal pollution in freshwater fish. The fish was used as a bioindicator, and Geographic information system (GIS) was sued to map the polluted regions. The results confirmed that Pb was detected in fish sampled at 28 locations, Cr at 24 locations, Cu and Zn at 30 locations, with values Pb detected ranging from 0.0016 mg kg-1 to 44.3 mg kg-1, Cr detected ranging from 0.07 mg kg-1 to 27 mg kg-1, Cu detected ranging from 0.031 mg kg-1 to 35.54 mg kg-1, and Zn detected ranging from 0.242 mg kg-1 to 103.2 mg kg-1. The strongest positive associations were discovered between Cu-Zn (r = 0.74, p < 0.05) and Cr-Zn (r = 0.57, p < 0.05). Spatial distribution maps depicting the consumption of fish as food and its corresponding Pb and Cr intake revealed a higher incidence of both carcinogenic and non-carcinogenic health concerns attributed to Pb and Cr in the region with populations consuming the fish.


Metals, Heavy , Water Pollutants, Chemical , Animals , Carcinogens/analysis , Public Health , Lead/analysis , Environmental Monitoring , Metals, Heavy/analysis , Fresh Water/analysis , Fishes , Water Pollution/analysis , Water/analysis , Risk Assessment , Water Pollutants, Chemical/analysis , Food Contamination/analysis
6.
J Sep Sci ; 46(6): e2200841, 2023 Mar.
Article En | MEDLINE | ID: mdl-36695632

Taxol and 10-Deacetyl baccatin III are major taxanes in the bark, needles, and endophytes of Taxus baccata. The current study aimed to develop a process for their separation from different matrices. Crude taxoid was prepared by extraction of samples with methanol, followed by partitioning with dichloromethane and precipitation with hexane. Analytical high-performance liquid chromatography involved isocratic elution on C18 column (4.6 × 250 mm, 5 µm) with methanol-water (70:30 v/v) at a flow rate of 1 ml/min. Injection volume was 20 µl and detection was carried out at 227 nm. The content of Taxol and 10-Deacetyl baccatin III in bark, needles and endophytic culture broth was 11.19 and 1.75 µg/mg; 11.19 and 1.75 µg/mg; and 2.80 and 0.22 µg/L, respectively. Preparative high-performance liquid chromatography was done on C18 column (10 × 250 mm, 5 µm) at a flow rate of 10 ml/min. About 20 g crude taxoid was processed in < 3 h with a recovery of about 90% for both the analytes. The purity of recovered Taxol and 10-Deacetyl baccatin III determined by ultra-high-performance liquid chromatography-mass spectrometry was found to be 95.78 ± 3.63% and 99.72 ± 0.18%, respectively. The structure of recovered Taxol was confirmed by nuclear magnetic resonance. The method can find use in biotransformation studies.


Paclitaxel , Taxus , Paclitaxel/chemistry , Chromatography, High Pressure Liquid , Endophytes/metabolism , Needles , Plant Bark/chemistry , Methanol/metabolism , Taxoids/analysis , Mass Spectrometry , Magnetic Resonance Spectroscopy
7.
Environ Res ; 220: 115092, 2023 03 01.
Article En | MEDLINE | ID: mdl-36587720

A consortium of two biosurfactant-producing bacteria (Bacillus pumilus KS2 and Bacillus cereus R2) was developed to remediate petroleum hydrocarbon-contaminated paddy soil. Soil samples from a heavily contaminated rice field near Assam's Lakwa oilfield were collected and placed in earthen pots for treatment. After each month of incubation, 50 g of soil from each earthen pot was collected, and the soil TPH (ppm) in each sample was determined. The extracted TPH samples were analysed by Gas chromatography-mass spectrometry (GC-MS) to confirm microbial degradation. The soil samples were examined for changes in pH, conductivity, total organic content (TOC), water holding capacity, and total nitrogen content in addition to TPH degradation. An increasing trend in TPH degradation was observed with each passing month. After six months of treatment, the sample with the lowest initial TPH concentration (1735 ppm) had the highest degradation (91.24%), while the soil with the highest amount of TPH (5780 ppm) had the lowest degradation (74.35%). A wide range of aliphatic hydrocarbons found in soil samples was degraded by the bacterial consortium. The soil samples contained eight different low- and high-molecular-weight PAHs. Some were fully mineralized, while others were significantly reduced. With the decrease in the TPH level in the polluted soil, a significant improvement in the soil's physicochemical qualities (such as pH, electrical conductivity, total organic content, and water-holding capacity) was observed.


Oryza , Petroleum , Soil Pollutants , Sewage/microbiology , Soil/chemistry , Biodegradation, Environmental , Soil Pollutants/analysis , Soil Microbiology , Hydrocarbons , Bacteria/metabolism , Petroleum/analysis , Petroleum/metabolism
8.
Int J Environ Health Res ; 33(7): 670-699, 2023 Jul.
Article En | MEDLINE | ID: mdl-35253535

The coronavirus disease 2019 (COVID-19) has caused a worldwide outbreak. The severe acute respiratory syndrome coronavirus 2 virus can be transmitted human-to-human through droplets and close contact where personal protective equipment (PPE) is imperative to protect the individuals. The advancement of nanotechnology with significant nanosized properties can confer a higher form of protection. Incorporation of nanotechnology into facemasks can exhibit antiviral properties. Nanocoating on surfaces can achieve self-disinfecting purposes and be applied in highly populated places. Moreover, nano-based hand sanitizers can confer better sterilizing efficacies with low skin irritation as compared to alcohol-based hand sanitizers. The present review discusses the incorporation of nanotechnology into nano-based materials and coatings in facemasks, self-surface disinfectants and hand sanitizers, in the hope to contribute to the current understanding of PPE to combat COVID-19.


COVID-19 , Hand Sanitizers , Humans , COVID-19/prevention & control , SARS-CoV-2 , Personal Protective Equipment , Nanotechnology
9.
Biotechnol Appl Biochem ; 70(1): 137-147, 2023 Feb.
Article En | MEDLINE | ID: mdl-35353924

Monascus purpureus copiously yields beneficial secondary metabolites , including Monascus pigments, which are broadly used as food additives, as a nitrite substitute in meat products, and as a colorant in the food industry. Monascus yellow pigments (monascin and ankaflavin) have shown potential antidiabetic, antibacterial, anti-inflammatory, antidepressant, antibiotic, anticancer, and antiobesity activities. Cosmetic and textile industries are other areas where it has established its potential as a dye. This paper reviews the production methods of Monascus yellow pigments, biosynthesis of Monascus pigments from M. purpureus, factors affecting yellow pigment production during fermentation, and the pharmacological properties of monascin and ankaflavin.


Monascus , Monascus/metabolism , Pigments, Biological/pharmacology , Flavins/pharmacology , Flavins/metabolism , Fermentation , Anti-Bacterial Agents/metabolism
10.
Metabolites ; 12(11)2022 Nov 15.
Article En | MEDLINE | ID: mdl-36422259

Vincristine is an anti-cancer compound and one of the most crucial vinca alkaloids produced by the medicinal plant Catharanthus roseus (L.) G. Don. (Apocynaceae). This plant is home to hundreds of endophytic microbes, which produce a variety of bioactive secondary metabolites that are known for their medicinal properties. In this study, we focused on isolating an endophytic fungus that could increase the yield of vincristine under laboratory conditions as an alternative to plant-mediated extraction of vincristine. The endophytic fungus Nigrospora zimmermanii (Apiosporaceae) was isolated from Catharanthus roseus and it was found to be producing the anticancer compound vincristine. It was identified using high-performance thin-layer chromatography by matching the Rf value and spectral data with the vincristine standard and mass spectrometry data and the reference molecule from the PubChem database. The generation study of this microbe showed that the production of vincristine in the parent fungus was at its maximum, i.e., 5.344 µg/mL, while it was slightly reduced in subsequent generations. A colonization study was also performed and it showed that the fungus N. zimmermanii was able to re-infect the plant Catharanthus roseus after 20 days of inoculation. The colonization study showed that N. zimmernanii could infect the plant after isolation. This method is an efficient and easy way to obtain a high yield of vincristine, as compared to plant-mediated production.

11.
J Fungi (Basel) ; 8(8)2022 Aug 17.
Article En | MEDLINE | ID: mdl-36012852

Vitamin D deficiency is highly prevalent in India and worldwide. Mushrooms are important nutritional foods, and in this context shiitake (Lentinula edodes), button (Agaricus bisporus) and oyster (Pleurotus ostreatus) mushrooms are known for their bioactive properties. The application of ultraviolet (UV) irradiation for the production of substantial amounts of vitamin D2 is well established. Levels of serum 25-hydroxy vitamin D (25-OHD), parathyroid hormone (PTH), calcium, phosphorus and alkaline phosphatase (ALP) were significantly (p < 0.05) improved in vitamin-D-deficient rats after feeding with UVB irradiated mushrooms for 4 weeks. Further, microscopic observations indicate an improvement in the osteoid area and the reduction in trabecular separation of the femur bone. In addition, the level of expression of the vitamin D receptor (VDR) gene and genes metabolizing vitamin D were explored. It was observed that in mushroom-fed and vitamin-D-supplemented groups, there was upregulation of CYP2R1 and VDR, while there was downregulation of CYP27B1 in the liver. Further, CYP2R1 was downregulated, while CYP27B1 and VDR were upregulated in kidney tissue.

12.
Int. microbiol ; 25(2): 275-284, May. 2022. ilus
Article En | IBECS | ID: ibc-216031

Vincristine, one of the major vinca alkaloid of Catharanthus roseus (L.) G. Don. (Apocynaceae), was enhanced under in vitro callus culture of C. roseus using fungal extract of an endophyte Alternaria sesami isolated from the surface-sterilized root cuttings of C. roseus. Vindoline, a precursor molecule for vincristine production, was detected for the first time in the fungal endophyte A. sesami which was used as a biotic elicitor in this study to enhance vincristine content in the C. roseus callus. It was identified using high-performance liquid chromatography and mass spectroscopy techniques by matching retention time and mass data with reference molecule. Supplementing the heat sterilized A. sesami endophytic fungal culture extract into the callus culture medium of C. roseus resulted in the enhancement of vincristine content in C. roseus callus by 21.717% after 105-day culture.(AU)


Humans , Vincristine , Catharanthus , Alternaria , Fungi , Endophytes , Microbiology , Bacteria
13.
Molecules ; 27(4)2022 Feb 21.
Article En | MEDLINE | ID: mdl-35209242

The objective of the current research is to develop ZnO-Manjistha extract (ZnO-MJE) nanoparticles (NPs) and to investigate their transdermal delivery as well as antimicrobial and antioxidant activity. The optimized formulation was further evaluated based on different parameters. The ZnO-MJE-NPs were prepared by mixing 10 mM ZnSO4·7H2O and 0.8% w/v NaOH in distilled water. To the above, a solution of 10 mL MJE (10 mg) in 50 mL of zinc sulfate was added. Box-Behnken design (Design-Expert software 12.0.1.0) was used for the optimization of ZnO-MJE-NP formulations. The ZnO-MJE-NPs were evaluated for their physicochemical characterization, in vitro release activity, ex vivo permeation across rat skin, antimicrobial activity using sterilized agar media, and antioxidant activity by the DPPH free radical method. The optimized ZnO-MJE-NP formulation (F13) showed a particle size of 257.1 ± 0.76 nm, PDI value of 0.289 ± 0.003, and entrapment efficiency of 79 ± 0.33%. Drug release kinetic models showed that the formulation followed the Korsmeyer-Peppas model with a drug release of 34.50 ± 2.56 at pH 7.4 in 24 h. In ex vivo studies ZnO-MJE-NPs-opt permeation was 63.26%. The antibacterial activity was found to be enhanced in ZnO-MJE-NPs-opt and antioxidant activity was found to be highest (93.14 ± 4.05%) at 100 µg/mL concentrations. The ZnO-MJE-NPs-opt formulation showed prolonged release of the MJE and intensified permeation. Moreover, the formulation was found to show significantly (p < 0.05) better antimicrobial and antioxidant activity as compared to conventional suspension formulations.


Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Rubia/chemistry , Skin/drug effects , Zinc Oxide/chemistry , Animals , Anti-Infective Agents/chemistry , Antioxidants/chemistry , Chemical Phenomena , Chemistry, Pharmaceutical , Drug Compounding , Drug Liberation , Drug Stability , Microbial Sensitivity Tests , Models, Chemical , Rats , Skin/metabolism , Spectrum Analysis
14.
Biotechnol Appl Biochem ; 69(6): 2517-2529, 2022 Dec.
Article En | MEDLINE | ID: mdl-35048411

ß-Carotene is the most treasured provitamin A carotenoid molecule exhibiting antioxidant and coloring properties and significant applications in the food, pharmaceutical, and nutraceutical industries. ß-Carotene has many biological functions within the human body; however, it is not synthesized within the human body, so its requirements are fulfilled through food and pharmaceuticals. Its manufacturing via chemical synthesis or extraction from plants offers low yields with excessive manufacturing expenses, which attracted the researchers toward microbial production of ß-carotene. This alternative provides higher yield and low expenses and thus is more economical. Phaffia rhodozyma is a basidiomycetous yeast that is utilized to prevent cardiovascular diseases and cancer and to enhance immunity and antiaging in people. This paper reviews the methods of production of ß-carotene, biosynthesis of ß-carotene fromP. rhodozyma, factors affecting ß-carotene production during fermentation, and pharmacological properties of ß-carotene.


Basidiomycota , beta Carotene , Humans , Fermentation , Xanthophylls/metabolism , Carotenoids , Basidiomycota/metabolism
15.
Biotechnol Lett ; 44(3): 485-502, 2022 Mar.
Article En | MEDLINE | ID: mdl-35099650

The present research work explores the Nattokinase (NK) producing capacity of five Bacillus subtilis strains (MTCC 2616, MTCC 2756, MTCC 2451, MTCC 1427, and MTCC 7164) using soybean varieties as substrate under solid-state fermentation conditions. Subsequently, the biochemical attributes of NKs were analyzed. Soybean variety didn't affect the production of NK to a significant extent; however, the five strains differed substantially for their NK producing capacity. NK produced by MTCC 2451 (R3) showed a low Kmvalue implying its higher specificity for fibrin but this strain (MTCC 2451) didn't produce NK in sufficient quantity. The low Km of MTCC 2451 NK implicates its potential candidature for treating blood clots in cardiovascular patients. The NK produced by MTCC 2616 (R1) was produced in sufficient quantity and showed good fibrin dissolving potential. The aprN of MTCC 2616 substantially varied from the other four strains. The aprN of MTCC 2756 (R2), MTCC 2451 (R3), MTCC 1427 (R4), and MTCC 7164 (R5) shared > 99% sequence identity, but the encoded NKs had significant variations in their Km values. The biochemical-molecular analyses indicate the co-presence of three critical residues (Thr130, Asp140, and Tyr217) as a quintessential attribute in determining the low Km of NK enzymes, and the absence of any one of the three critical residues may affect (highly increase) the Km.


Bacillus subtilis , Glycine max , Bacillus subtilis/genetics , Fermentation , Fibrin , Genomics , Humans , Glycine max/genetics
16.
Int Microbiol ; 25(2): 275-284, 2022 May.
Article En | MEDLINE | ID: mdl-34622356

Vincristine, one of the major vinca alkaloid of Catharanthus roseus (L.) G. Don. (Apocynaceae), was enhanced under in vitro callus culture of C. roseus using fungal extract of an endophyte Alternaria sesami isolated from the surface-sterilized root cuttings of C. roseus. Vindoline, a precursor molecule for vincristine production, was detected for the first time in the fungal endophyte A. sesami which was used as a biotic elicitor in this study to enhance vincristine content in the C. roseus callus. It was identified using high-performance liquid chromatography and mass spectroscopy techniques by matching retention time and mass data with reference molecule. Supplementing the heat sterilized A. sesami endophytic fungal culture extract into the callus culture medium of C. roseus resulted in the enhancement of vincristine content in C. roseus callus by 21.717% after 105-day culture.


Catharanthus , Alternaria , Catharanthus/chemistry , Plant Extracts , Vincristine
17.
Molecules ; 26(3)2021 Jan 28.
Article En | MEDLINE | ID: mdl-33525745

Recently, there has been a paradigm shift from conventional therapies to relatively safer phytotherapies. This divergence is crucial for the management of various chronic diseases. Okra (Abelmoschus esculentus L.) is a popular vegetable crop with good nutritional significance, along with certain therapeutic values, which makes it a potential candidate in the use of a variety of nutraceuticals. Different parts of the okra fruit (mucilage, seed, and pods) contain certain important bioactive components, which confer its medicinal properties. The phytochemicals of okra have been studied for their potential therapeutic activities on various chronic diseases, such as type-2 diabetes, cardiovascular, and digestive diseases, as well as the antifatigue effect, liver detoxification, antibacterial, and chemo-preventive activities. Moreover, okra mucilage has been widely used in medicinal applications such as a plasma replacement or blood volume expanders. Overall, okra is considered to be an easily available, low-cost vegetable crop with various nutritional values and potential health benefits. Despite several reports about its therapeutic benefits and potential nutraceutical significance, there is a dearth of research on the pharmacokinetics and bioavailability of okra, which has hampered its widespread use in the nutraceutical industry. This review summarizes the available literature on the bioactive composition of okra and its potential nutraceutical significance. It will also provide a platform for further research on the pharmacokinetics and bioavailability of okra for its possible commercial production as a therapeutic agent against various chronic diseases.


Abelmoschus/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Animals , Chronic Disease/drug therapy , Diet/methods , Dietary Supplements , Fruit/chemistry , Humans , Phytotherapy/methods , Plant Extracts/chemistry
18.
Eur J Pharmacol ; 889: 173522, 2020 Dec 15.
Article En | MEDLINE | ID: mdl-32866503

The complications of Alzheimer's disease (AD) have made the development of its treatment a challenging task. Several studies have indicated the disruption of insulin receptor substrate-1 (IRS-1) signaling during the development and progression of AD. The role of a dipeptidyl peptidase-4 (DPP-4) inhibitor on hippocampal IRS-1 signaling has not been investigated before. In this study, we evaluated the efficacy of alogliptin (DPP-4 inhibitor) on hippocampal insulin resistance and associated AD complications. In the present study, amyloid-ß (1-42) fibrils were produced and administered intrahippocampally for inducing AD in Wistar rats. After 7 days of surgery, rats were treated with 10 and 20 mg/kg of alogliptin for 28 days. Morris water maze (MWM) test was performed in the last week of our experimental study. Post 24 h of final treatment, rats were euthanized and hippocampi were separated for biochemical and histopathological investigations. In-silico analysis revealed that alogliptin has a good binding affinity with Aß and beta-secretase-1 (BACE-1). Alogliptin significantly restored cognitive functions in Aß (1-42) fibrils injected rats during the MWM test. Alogliptin also significantly attenuated insulin level, IRS-1pS307 expression, Aß (1-42) level, GSK-3ß activity, TNF-α level and oxidative stress in the hippocampus. The histopathological analysis supported alogliptin mediated neuroprotective and anti-amyloidogenic effect. Immunohistochemical analysis also revealed a reduction in IRS-1pS307 expression after alogliptin treatment. The in-silico, behavioral, biochemical and histopathological analysis supports the protective effect of alogliptin against hippocampal insulin resistance and AD.


Alzheimer Disease/metabolism , Amyloid beta-Peptides/toxicity , Disease Models, Animal , Hippocampus/metabolism , Insulin Resistance/physiology , Peptide Fragments/toxicity , Piperidines/therapeutic use , Uracil/analogs & derivatives , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Amyloid/metabolism , Amyloid/toxicity , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dose-Response Relationship, Drug , Female , Hippocampus/drug effects , Male , Maze Learning/drug effects , Maze Learning/physiology , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Piperidines/pharmacology , Random Allocation , Rats , Rats, Wistar , Uracil/pharmacology , Uracil/therapeutic use
19.
Saudi Pharm J ; 28(6): 719-728, 2020 Jun.
Article En | MEDLINE | ID: mdl-32550804

Present study explores native L-asparaginase encapsulated long-acting cross-linker-free PLGA-nanoformulation in an Ehrlich ascites tumor model. L-asparaginase-PLGA nanoparticles for tumor were prepared using a double emulsion solvent evaporation technique, optimized and validated by Box-Behnken Design. L-ASN-PNs showed a particle size of 195 nm ± 0.2 nm and a PDI of 0.2. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques revealed its smooth morphology and elicited an in-vitro release of 80% of the drug, following the Higuchi drug release model. In-vivo studies of L-ASN-PNs on an Ehrlich ascites tumor (EAT) model were completed and compared with the standard medication of 5-fluorouracil (5-FU) treatment. L-ASN-PN treated mice showed a 51.15% decrease in tumor volume and 100% survival rate with no reduction in body weight, no haemotoxicity and no hepatotoxicity, as evident from the hematological parameters, and liver enzyme parameters that were well within the prescribed limits. Chemotherapy has severe side effects and restricted therapeutic success. Henceforth, the purported L-Asparaginase PLGA nanoparticles are a suitable entity for better tumor regression, intra-tumor accumulation and no hematological side-effects.

20.
Phytochem Anal ; 31(4): 488-500, 2020 Jul.
Article En | MEDLINE | ID: mdl-31945805

INTRODUCTION: Gymnemagenin is the bioactive metabolite found in Gymnema sylvestre leaves and possesses different therapeutic potential. Due to its lower abundance and higher market potential, gymnemagenin was obtained from chemical conversion and bacterial biotransformation. OBJECTIVE: To obtain the probiotic-based fermentative conversion of gymnemic acid-enriched G. sylvestre leaf extract to gymnemagenin-containing nutraceuticals and its metabolites based chromatographic comparison. MATERIAL AND METHODS: Gymnema sylvestre leaves were extracted through soxhalation, and the extract was prepared and characterised. Gymnemic acid was fermented, separately, by Lactobacillus casei, Lactobacillus rhamnosus, Bifidobacterium bifidum, and by their mix co-culture. The fermented materials were analysed for their gymnemagenin content, antioxidant potential, antidiabetic potential, and metabolomics analysis. RESULTS: Extraction yielded about 35% w/w of raw plant material, and 8.5% was found to be as total saponin content. Extract at higher concentration (≥ 5%, w/v) significantly altered the growth behaviour of probiotics. High-performance thin-layer chromatography (HPTLC) based quantification of gymnemagenin revealed that a maximum increase of 95.5% gymnemagenin was found in extract incubated with B. bifidum followed by mix co-culture containing (B. bifidum, L. casei, and L. rhamnosus), L. casei, and L. rhamnosus. However, liquid chromatography mass spectrometry (LC-MS) analysis resulted in the identification of a total of 56 metabolites. CONCLUSION: Chromatographically profiled, and probiotic-based fermented G. sylvestre leaves can be used as a potent nutraceutical for diabetes and other metabolic disorders.


Gymnema sylvestre , Saponins , Triterpenes , Plant Extracts
...