Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Infect Genet Evol ; 124: 105668, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39271095

RESUMEN

The global challenge of water resource availability is exacerbated by anthropogenic influences that promote the emergence of pollutants. Among these pollutants are microbiological agents, including viruses, which are ubiquitous in the biosphere and play a pivotal role in both ecological balance and the occurrence of diseases in animals and plants. Consequently, monitoring viruses in water sources becomes indispensable for the establishment of effective prevention, promotion, and control strategies. Within this context, the study focuses on the identification of novel viruses belonging to the Picornavirales order in freshwater from the Guarapiranga Reservoir in the state of São Paulo, Brazil. The samples were subjected to viral metagenomics. Our analysis led to the characterization of four distinct sequences (GinkV-05, AquaV_10, MarV_14, and MarV_64), which exhibited significant divergence compared to other members of the Picornavirales order. This remarkable diversity prompted the identification of a potential new genus within the Marnaviridae family, tentatively named Ginkgonavirus. Additionally, we characterized four sequences in a very distinct clade and propose the recognition of a novel family (named Aquaviridae) within the Picornavirales order. Our findings contribute valuable insights into the previously uncharted diversity of Picornavirales present in water sources, shedding light on an important facet of viral ecology and evolution in aquatic environments.


Asunto(s)
Agua Dulce , Filogenia , Brasil , Agua Dulce/virología , Metagenómica/métodos , Genoma Viral , Picornaviridae/genética , Picornaviridae/clasificación , Picornaviridae/aislamiento & purificación
2.
Artículo en Inglés | MEDLINE | ID: mdl-39297227

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants harboring mutations in the structural protein, especially in the receptor binding domain (RBD) of spike protein, have raised concern about potential immune escape. The spike protein of SARS-CoV-2 plays a vital role in infection and is an important target for neutralizing antibodies. The mutations that occur in the structural proteins, especially in the spike protein, lead to changes in the virus attributes of transmissibility, an increase in disease severity, a notable reduction in neutralizing antibodies generated and thus a decreased response to vaccines and therapy. The observed multiple mutations in the RBD of the spike protein showed immune escape because it increases the affinity of spike protein binding with the ACE-2 receptor of host cells and increases resistance to neutralizing antibodies. Cytotoxic T-cell responses are crucial in controlling SARS-CoV-2 infections from the infected tissues and clearing them from circulation. Cytotoxic T cells efficiently recognized the infected cells and killed them by releasing soluble mediator's perforin and granzymes. However, the overwhelming response of T cells and, subsequently, the overproduction of inflammatory mediators during severe infections with SARS-CoV-2 may lead to poor outcomes. This review article summarizes the impact of mutations in the spike protein of SARS-CoV-2, especially mutations of RBD, on immunogenicity, immune escape and vaccine-induced immunity, which could contribute to future studies focusing on vaccine design and immunotherapy.

3.
Discov Nano ; 19(1): 143, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39243326

RESUMEN

Breast cancer (BC) remains a leading cause of morbidity and mortality among women worldwide, with triple-negative breast cancer (TNBC) posing significant treatment challenges due to its aggressive phenotype and resistance to conventional therapies. Recent advancements in nanocarrier technology offer promising solutions for enhancing drug delivery, improving bioavailability, and increasing drug accumulation at tumor sites through targeted approaches. This review delves into the latest innovations in BC detection and treatment, highlighting the role of nanocarriers like polymeric micelles, liposomes, and magnetic nanoparticles in overcoming the limitations of traditional therapies. Additionally, the manuscript discusses the integration of cutting-edge diagnostic tools, such as multiplex PCR-Nested Next-Generation Sequencing (mPCR-NGS) and blood-based biomarkers, which are revolutionizing early detection and molecular profiling of BC. The convergence of these technologies not only enhances therapeutic outcomes but also paves the way for personalized medicine in BC management. This comprehensive review underscores the potential of nanocarriers in transforming BC treatment and emphasizes the critical importance of early detection in improving patient prognosis.

4.
Mol Cell Probes ; 77: 101974, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038766

RESUMEN

BACKGROUND: Exosome (EXOs) are rapidly being identified as key mediators of cell-to-cell communication. They convey biologically active molecules to target cells, serve important roles in a range of physiological and pathological processes, and have enormous potential as novel therapeutic strategies. METHODS: Preclinical research published between 2019 and 2023 provided the study's data searched on different medline search engine, and clinicaltrials.gov was searched for clinical data. These papers were chosen because they are relevant to the research of mesenchymal stem cell-derived exosomes (MSC-EXOs). Thematic synthesis and meta-analysis were used to perform the meta-analysis of diabetic wound healing. RESULTS: For data extraction, a total of 18 preclinical and 4 clinical trials were selected. Preclinical investigations involving EXOs across various animal wound healing models showed promising potential for treatment. Specifically, following EXO treatment, there was a notable correlation with wound closure rates, with a pooled proportion of 46 % (95 % CI: 0.34; 0.59) and τ2 of 0.0593 after 3 ± 2 days, 54 % (95 % CI: 0.43; 0.65) and τ2 of 0.0465 after 7 ± 2 days, and 69 % (95 % CI: 0.62; 0.76) and τ2 of 0.0221 after 14 ± 2 days, with an egger's test p-value of <0.01. Further investigation into heterogeneity was conducted through subgroup analysis based on the source of EXO and the animal model utilized in the study. CONCLUSIONS: EXOs are proving to be viable platforms for the treatment of a wide range of disorders in clinical trials. MSC-EXOs exhibited significant diabetic wound healing capabilities across diverse outcomes including wound closure, increase angiogenesis, immunomodulatory ability and skin regeneration with its typical structure and functions.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Cicatrización de Heridas , Exosomas/metabolismo , Humanos , Animales , Células Madre Mesenquimatosas/metabolismo , Diabetes Mellitus/terapia , Complicaciones de la Diabetes/terapia
5.
JMIRx Med ; 5: e51787, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38606668

RESUMEN

Background: Animal-assisted therapy, also known as pet therapy, is a therapeutic intervention that involves animals to enhance the well-being of individuals across various populations and settings. Objective: This systematic study aims to assess the outcomes of animal-assisted therapy interventions and explore the associated policies. Methods: A total of 16 papers published between 2015 and 2023 were selected for analysis. These papers were chosen based on their relevance to the research topic of animal-assisted therapy and their availability in scholarly databases. Thematic synthesis and meta-analysis were used to synthesize the qualitative and quantitative data extracted from the selected papers. Results: The analysis included 16 studies that met the inclusion criteria and were deemed to be of moderate or higher quality. Among these studies, 4 demonstrated positive results for therapeutic mediation and one for supportive mediation in psychiatric disorders. Additionally, all studies showed positive outcomes for depression and neurological disorders. Regarding stress and anxiety, 3 studies indicated supportive mediation, while 2 studies showed activating mediation. Conclusions: The overall assessment of animal-assisted therapy shows promise as an effective intervention in promoting well-being among diverse populations. Further research and the establishment of standardized outcome assessment measures and comprehensive policies are essential for advancing the field and maximizing the benefits of animal-assisted therapy.

6.
Microorganisms ; 12(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38674632

RESUMEN

CRESS-DNA encompasses a broad spectrum of viruses documented across diverse organisms such as animals, plants, diatoms, fungi, and marine invertebrates. Despite this prevalence, the full extent of these viruses' impact on the environment and their respective hosts remains incompletely understood. Furthermore, an increasing number of viruses within this category lack detailed characterization. This investigation focuses on unveiling and characterizing viruses affiliated with the Genomoviridae family identified in liver samples from the bat Molossus molossus. Leveraging viral metagenomics, we identified seven sequences (MmGmV-PA) featuring a circular DNA genome housing two ORFs encoding replication-associated protein (Rep) and capsid protein (Cap). Predictions based on conserved domains typical of the Genomoviridae family were established. Phylogenetic analysis revealed the segregation of these sequences into two clades aligning with the genera Gemycirculavirus (MmGmV-06-PA and MmGmV-07-PA) and Gemykibivirus (MmGmV-01-PA, MmGmV-02-PA, MmGmV-03-PA, MmGmV-05-PA, and MmGmV-09-PA). At the species level, pairwise comparisons based on complete nucleotide sequences indicated the potential existence of three novel species. In summary, our study significantly contributes to an enhanced understanding of the diversity of Genomoviridae within bat samples, shedding light on previously undiscovered viral entities and their potential ecological implications.

7.
Microorganisms ; 12(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276191

RESUMEN

The Totiviridae family of viruses has a unique genome consisting of double-stranded RNA with two open reading frames that encode the capsid protein (Cap) and the RNA-dependent RNA polymerase (RdRpol). Most virions in this family are isometric in shape, approximately 40 nm in diameter, and lack an envelope. There are five genera within this family, including Totivirus, Victorivirus, Giardiavirus, Leishmaniavirus, and Trichomonasvirus. While Totivirus and Victorivirus primarily infect fungi, Giardiavirus, Leishmaniavirus, and Trichomonasvirus infect diverse hosts, including protists, insects, and vertebrates. Recently, new totivirus-like species have been discovered in fish and plant hosts, and through metagenomic analysis, a novel totivirus-like virus (named Tianjin totivirus) has been isolated from bat guano. Interestingly, Tianjin totivirus causes cytopathic effects in insect cells but cannot grow in mammalian cells, suggesting that it infects insects consumed by insectivorous bats. In this study, we used next-generation sequencing and identified totivirus-like viruses in liver tissue from Molossus molossus bats in the Amazon region of Brazil. Comparative phylogenetic analysis based on the RNA-dependent RNA polymerase region revealed that the viruses identified in Molossus bats belong to two distinct phylogenetic clades, possibly comprising different genera within the Totiviridae family. Notably, the mean similarity between the Tianjin totivirus and the totiviruses identified in Molossus bats is less than 18%. These findings suggest that the diversity of totiviruses in bats is more extensive than previously recognized and highlight the potential for bats to serve as reservoirs for novel toti-like viruses.

8.
Arch Biochem Biophys ; 753: 109911, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280562

RESUMEN

Diabetes is a metabolic illness that increases protein glycosylation in hyperglycemic conditions, which can have an impact on almost every organ system in the body. The role of vitamin D in the etiology of diabetes under RAGE (receptor for advanced glycation end products) stress has recently received some attention on a global scale. Vitamin D's other skeletal benefits have generated a great deal of research. Vitamin D's function in the development of type 1 and type 2 diabetes is supported by the discovery of 1,25 (OH)2D3 and 1-Alpha-Hydroylase expression in immune cells, pancreatic beta cells, and several other organs besides the bone system. A lower HBA1c level, metabolic syndrome, and diabetes mellitus all seems to be associated with vitamin D insufficiency. Most of the cross-sectional and prospective observational studies that were used to gather human evidence revealed an inverse relationship between vitamin D level and the prevalence or incidence of elevated HBA1c in type 2 diabetes. Several trials have reported on the impact of vitamin D supplementation for glycemia or incidence of type 2 diabetes, with varying degrees of success. The current paper examines the available data for a relationship between vitamin D supplementation and HBA1c level in diabetes and discusses the biological plausibility of such a relationship.


Asunto(s)
Diabetes Mellitus Tipo 2 , Deficiencia de Vitamina D , Humanos , Hemoglobina Glucada , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/epidemiología , Estudios Transversales , Vitamina D/uso terapéutico , Vitaminas , Suplementos Dietéticos , Estudios Observacionales como Asunto
9.
Sci Rep ; 14(1): 631, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182678

RESUMEN

Probiotics have gained a significant attention as a promising way to improve gut health and overall well-being. The increasing recognition of the potential health advantages associated with functional food products, leading to a specific emphasis on co-encapsulating probiotic bacteria and bioactive compounds within a unified matrix. To further explore this concept, a meta-analysis was performed to assess the effects of probiotics encapsulated in nanoparticles. A comprehensive meta-analysis was conducted, encompassing 10 papers published from 2017 to 2022, focusing on the encapsulation of probiotics within nanoparticles and their viability in various gastrointestinal conditions. The selection of these papers was based on their direct relevance to the research topic. Random-effect models were used to aggregate study-specific risk estimates. In the majority of studies, it was observed that nano-encapsulated nanoparticles showed improved viability over time compared to their free state counterparts. At various time intervals, the odds ratios (OR) with 95% confidence intervals (CI) were estimated using fixed and random effect models. At 0 min, the OR (95%CI) was 2.79 (2.79; 2.80) and 2.38 (2.14; 2.64) for. At 30 and 60 min observation was at similar rate of 2.23 (2.23; 2.24) and 2.05 (1.73; 2.43). However, at 90 min it was 1.39 (1.39; 1.39) and 1.66 (1.29; 2.14) and at 120 min 2.41 (2.41; 2.42) and 2.03 (1.63; 2.52). Overall evaluation of encapsulation revealed an improvement in probiotic bacterial viability in simulated the gastrointestinal environments.


Asunto(s)
Nanopartículas , Probióticos , Alimentos Funcionales , Viabilidad Microbiana , Oportunidad Relativa
10.
Artículo en Inglés | MEDLINE | ID: mdl-38279725

RESUMEN

AIMS: Leishmaniasis is a deadly tropical disease that is neglected in many countries. World Health Organization, along with a few other countries, has been working together to protect against these parasites. Many novel drugs from the past few years have been discovered and subjected against leishmaniasis, which have been effective but they are quite expensive for lower-class people. Some drugs showed no effect on the patients, and the longer use of these medicines has made resistance against these deadly parasites. Researchers have been working for better medication by using natural products from medicinal plants (oils, secondary metabolites, plant extracts) and other alternatives to find active compounds as an alternative to the current synthetic drugs. MATERIALS AND METHODS: To find more potential natural products to treat Leishmania spp, a study has been conducted and reported many plant metabolites and other natural alternatives from plants and their extracts. Selected research papers with few term words such as natural products, plant metabolites, Leishmaniasis, in vivo, in vitro, and treatment against leishmaniasis; in the Google Scholar, PubMed, and Science Direct databases with selected research papers published between 2015 and 2021 have been chosen for further analysis has been included in this report which has examined either in vivo or in vitro analysis. RESULTS: This paper reported more than 20 novel natural compounds in 20 research papers that have been identified which report a leishmanicidal activity and shows an action against promastigote, axenic, and intracellular amastigote forms. CONCLUSION: Medicinal plants, along with a few plant parts and extracts, have been reported as a possible novel anti-leishmanial medication. These medicinal plants are considered nontoxic to Host cells. Leishmaniasis treatments will draw on the isolated compounds as a source further and these compounds compete with those already offered in clinics.


Asunto(s)
Antiprotozoarios , Productos Biológicos , Leishmania , Leishmaniasis , Plantas Medicinales , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Leishmaniasis/tratamiento farmacológico , Animales , Plantas Medicinales/química , Leishmania/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
11.
Trans R Soc Trop Med Hyg ; 118(3): 206-222, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-37972992

RESUMEN

Scrub typhus is one of the most neglected tropical diseases, a leading cause of acute undifferentiated febrile illness in areas of the 'tsutsugamushi triangle', diagnosed frequently in South Asian countries. The bacteria Orientia tsutsugamushi is the causative agent of the disease, which enters the human body through the bite of trombiculid mites (also known as chiggers) of the genus Leptotrombidium deliense. Diagnosis of the disease is challenging, as its early symptoms mimic other febrile illnesses like dengue, influenza and corona viruses. Lack of rapid, reliable and cost-effective diagnostic methods further complicates the identification process. Northeast India, a mountainous region with a predominantly rural tribal population, has witnessed a resurgence of scrub typhus cases in recent years. Various ecological factors, including rodent populations, habitat characteristics and climatic conditions, influence its prevalence. Entomological investigations have confirmed the abundance of vector mites, highlighting the importance of understanding their distribution and the probability of transmission of scrub typhus in the region. Proper diagnosis, awareness campaigns and behavioural interventions are essential for controlling scrub typhus outbreaks and reducing its impact on public health in Northeast India. Further research and community-based studies are necessary to accurately assess the disease burden and implement effective prevention strategies.


Asunto(s)
Orientia tsutsugamushi , Tifus por Ácaros , Trombiculidae , Animales , Humanos , Tifus por Ácaros/diagnóstico , Tifus por Ácaros/epidemiología , Tifus por Ácaros/microbiología , Trombiculidae/microbiología , Reservorios de Enfermedades , India/epidemiología
12.
J Biomol Struct Dyn ; 42(5): 2449-2463, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37199276

RESUMEN

Available anti-leishmanial drugs are associated with toxic side effects, necessitating the search for safe and effective alternatives. This study is focused on identifying traditional medicinal plant natural products for anti-leishmanial potential and possible mechanism of action. Compounds S and T. cordifolia residual fraction (TC-5) presented the best anti-leishmanial activity (IC50: 0.446 and 1.028 mg/ml) against promastigotes at 48 h and less cytotoxicity to THP-1 macrophages. These test agents elicited increased expression of pro-inflammatory cytokines; TNFα and IL-12. In infected untreated macrophages, NO release was suppressed but was significantly (p < 0.05) increased in infected cells treated with compound S. Importantly, Compound S was found to interact with LdTopoIIdimer in silico, resulting in a likely reduced ability of nucleic acid (dsDNA)-remodelling and, as a result, parasite proliferation in vitro. Thereby, Compound S possesses anti-leishmanial activity and this effect occurs via a Th1-mediated pro-inflammatory response. An increase in NO release and its inhibitory effect on LdTopoII may also contribute to the anti-leishmanial effect of compound S. These results show the potential of this compound as a potential starting point for the discovery of novel anti-leishmanial leads.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antiprotozoarios , Leishmania donovani , Plantas Medicinales , Extractos Vegetales/farmacología , Citocinas/metabolismo , Antiprotozoarios/farmacología
13.
BMC Microbiol ; 23(1): 291, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845637

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) is a critical global issue that poses significant threats to human health, animal welfare, and the environment. With the increasing emergence of resistant microorganisms, the effectiveness of current antimicrobial medicines against common infections is diminishing. This study aims to conduct a competitive meta-analysis of surveillance data on resistant microorganisms and their antimicrobial resistance patterns in two countries, Egypt and the United Kingdom (UK). METHODS: Data for this study were obtained from published reports spanning the period from 2013 to 2022. In Egypt and the UK, a total of 9,751 and 10,602 food samples were analyzed, respectively. Among these samples, 3,205 (32.87%) in Egypt and 4,447 (41.94%) in the UK were found to contain AMR bacteria. RESULTS: In Egypt, the predominant resistance was observed against ß-lactam and aminoglycosides, while in the United Kingdom, most isolates exhibited resistance to tetracycline and ß-lactam. The findings from the analysis underscore the increasing prevalence of AMR in certain microorganisms, raising concerns about the development of multidrug resistance. CONCLUSION: This meta-analysis sheds light on the escalating AMR problem associated with certain microorganisms that pose a higher risk of multidrug resistance development. The significance of implementing One Health AMR surveillance is emphasized to bridge knowledge gaps and facilitate accurate AMR risk assessments, ensuring consumer safety. Urgent actions are needed on a global scale to combat AMR and preserve the effectiveness of antimicrobial treatments for the well-being of all living beings.


Asunto(s)
Antiinfecciosos , Salud Única , Animales , Humanos , Antibacterianos/uso terapéutico , beta-Lactamas , Farmacorresistencia Bacteriana , Egipto , Reino Unido
14.
Biomolecules ; 13(8)2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37627247

RESUMEN

Antimicrobial resistance (AMR) is a growing public health concern worldwide, and it poses a significant threat to human, animal, and environmental health. The overuse and misuse of antibiotics have contributed significantly and others factors including gene mutation, bacteria living in biofilms, and enzymatic degradation/hydrolyses help in the emergence and spread of AMR, which may lead to significant economic consequences such as reduced productivity and increased health care costs. Nanotechnology offers a promising platform for addressing this challenge. Nanoparticles have unique properties that make them highly effective in combating bacterial infections by inhibiting the growth and survival of multi-drug-resistant bacteria in three areas of health: human, animal, and environmental. To conduct an economic evaluation of surveillance in this context, it is crucial to obtain an understanding of the connections to be addressed by several nations by implementing national action policies based on the One Health strategy. This review provides an overview of the progress made thus far and presents potential future directions to optimize the impact of nanobiotics on AMR.


Asunto(s)
Antibacterianos , Salud Única , Animales , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana , Biopelículas , Análisis Costo-Beneficio
15.
J Nanobiotechnology ; 21(1): 148, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149615

RESUMEN

Nanobiotechnology, as a novel and more specialized branch of science, has provided a number of nanostructures such as nanoparticles, by utilizing the methods, techniques, and protocols of other branches of science. Due to the unique features and physiobiological characteristics, these nanostructures or nanocarriers have provided vast methods and therapeutic techniques, against microbial infections and cancers and for tissue regeneration, tissue engineering, and immunotherapies, and for gene therapies, through drug delivery systems. However, reduced carrying capacity, abrupt and non-targeted delivery, and solubility of therapeutic agents, can affect the therapeutic applications of these biotechnological products. In this article, we explored and discussed the prominent nanobiotechnological methods and products such as nanocarriers, highlighted the features and challenges associated with these products, and attempted to conclude if available nanostructures offer any scope of improvement or enhancement. We aimed to identify and emphasize the nanobiotechnological methods and products, with greater prospect and capacity for therapeutic improvements and enhancements. We found that novel nanocarriers and nanostructures, such as nanocomposites, micelles, hydrogels, microneedles, and artificial cells, can address the associated challenges and inherited drawbacks, with help of conjugations, sustained and stimuli-responsive release, ligand binding, and targeted delivery. We recommend that nanobiotechnology, despite having few challenges and drawbacks, offers immense opportunities that can be harnessed in delivering quality therapeutics with precision and prediction. We also recommend that, by exploring the branched domains more rigorously, bottlenecks and obstacles can also be addressed and resolved in return.


Asunto(s)
Nanocompuestos , Nanopartículas , Nanoestructuras , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos/métodos , Nanoestructuras/química , Micelas , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Portadores de Fármacos/química
16.
Virus Genes ; 59(3): 464-472, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004601

RESUMEN

There is a growing interest in phages as potential biotechnological tools in human health owing to the antibacterial activity of these viruses. In this study, we characterized a new member (named PhiV_005_BRA/2016) of the recently identified phage species Phietavirus Henu 2. PhiV_005_BRA/2016 was detected through metagenomic analysis of stool samples of individuals with acute gastroenteritis. PhiV_005_BRA/2016 contains double-stranded linear DNA (dsDNA), it has a genome of 43,513 base pairs (bp), with a high identity score (99%) with phage of the genus Phietavirus, species of Phietavirus Henu 2. Life style prediction indicated that PhiV_005_BRA/2016 is a lysogenic phage whose the main host is methicillin-resistant Staphylococcus aureus (MRSA). Indeed, we found PhiV_005_BRA/2016 partially integrated in the genome of distinct MRSA strains. Our findings highlights the importance of large-scale screening of bacteriophages to better understand the emergence of multi-drug resistant bacterial.


Asunto(s)
Bacteriófagos , Gastroenteritis , Staphylococcus aureus Resistente a Meticilina , Siphoviridae , Infecciones Estafilocócicas , Humanos , Viroma , Infecciones Estafilocócicas/microbiología
17.
Viruses ; 15(3)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36992315

RESUMEN

Chaphamaparvovirus (CHPV) is a recently characterized genus of the Parvoviridae family whose members can infect different hosts, including bats, which constitute the second most diverse order of mammals and are described worldwide as important transmitters of zoonotic diseases. In this study, we identified a new CHPV in bat samples from the municipality of Santarém (Pará state, North Brazil). A total of 18 Molossus molossus bats were analyzed using viral metagenomics. In five animals, we identified CHPVs. These CHPV sequences presented the genome with a size ranging from 3797 to 4284 bp. Phylogenetic analysis-based nucleotide and amino acid sequences of the VP1 and NS1 regions showed that all CHPV sequences are monophyletic. They are also closely related to CHPV sequences previously identified in bats in southern and southeast Brazil. According to the International Committee on Taxonomy of Viruses (ICTV) classification criteria for this species (the CHPV NS1 gene region must have 85% identity to be classified in the same species), our sequences are likely a new specie within the genus Chaphamaparvovirus, since they have less than 80% identity with other CHPV described earlier in bats. We also make some phylogenetic considerations about the interaction between CHPV and their host. We suggest a high level of specificity of CPHV and its hosts. Thus, the findings contribute to improving information about the viral diversity of parvoviruses and show the importance of better investigating bats, considering that they harbor a variety of viruses that may favor zoonotic events.


Asunto(s)
Quirópteros , Parvovirus , Animales , Filogenia , Brasil/epidemiología , Mamíferos
18.
Plants (Basel) ; 12(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36986895

RESUMEN

This study aims to describe the therapeutic potential of C. nocturnum leaf extracts against diabetes and neurological disorders via the targeting of α-amylase and acetylcholinesterase (AChE) activities, followed by computational molecular docking studies to establish a strong rationale behind the α-amylase and AChE inhibitory potential of C. nocturnum leaves-derived secondary metabolites. In our study, the antioxidant activity of the sequentially extracted C. nocturnum leaves extract was also investigated, in which the methanolic fraction exhibited the strongest antioxidant potential against DPPH (IC50 39.12 ± 0.53 µg/mL) and ABTS (IC50 20.94 ± 0.82 µg/mL) radicals. This extract strongly inhibited the α-amylase (IC50188.77 ± 1.67 µg/mL) and AChE (IC50 239.44 ± 0.93 µg/mL) in a non-competitive and competitive manner, respectively. Furthermore, in silico analysis of compounds identified in the methanolic extract of the leaves of C. nocturnum using GC-MS revealed high-affinity binding of these compounds with the catalytic sites of α-amylase and AChE, with binding energy ranging from -3.10 to -6.23 kcal/mol and from -3.32 to -8.76 kcal/mol, respectively. Conclusively, the antioxidant, antidiabetic, and anti-Alzheimer activity of this extract might be driven by the synergistic effect of these bioactive phytoconstituents.

19.
Antibiotics (Basel) ; 12(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36830181

RESUMEN

Antimicrobial resistance increases day by day around the world. To overcome this situation new antimicrobial agents are needed. Spices such as clove, ginger, coriander, garlic, and turmeric have the potential to fight resistant microbes. Due to their therapeutic properties, medicinal herbs and spices have been utilized as herbal medicines since antiquity. They are important sources of organic antibacterial substances that are employed in treating infectious disorders caused by pathogens such as bacteria. The main focus of the study is the bioactivity of the active ingredients present in different kinds of naturally available spices. We conducted a thorough search of PubMed, Google Scholar, and Research Gate for this review. We have read many kinds of available literature, and in this paper, we conclude that many different kinds of naturally available spices perform some form of bioactivity. After reading several papers, we found that some spices have good antimicrobial and antifungal properties, which may help in controlling the emerging antimicrobial resistance and improving human health. Spices have many phytochemicals, which show good antimicrobial and antifungal effects. This review of the literature concludes that the natural bioactivate compounds present in spices can be used as a drug to overcome antimicrobial resistance in human beings.

20.
Pharmaceutics ; 15(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36839932

RESUMEN

Many novel medical therapies use nanoparticle-based drug delivery systems, including nanomaterials through drug delivery systems, diagnostics, or physiologically active medicinal products. The approval of nanoparticles with advanced therapeutic and diagnostic potentials for applications in medication and immunization depends strongly on their synthesizing procedure, efficiency of functionalization, and biological safety and biocompatibility. Nanoparticle biodistribution, absorption, bioavailability, passage across biological barriers, and biodistribution are frequently assessed using bespoke and biological models. These methods largely rely on in vitro cell-based evaluations that cannot predict the complexity involved in preclinical and clinical studies. Therefore, assessing the nanoparticle risk has to involve pharmacokinetics, organ toxicity, and drug interactions manifested at multiple cellular levels. At the same time, there is a need for novel approaches to examine nanoparticle safety risks due to increased constraints on animal exploitation and the demand for high-throughput testing. We focus here on biological evaluation methodologies that provide access to nanoparticle interactions with the organism (positive or negative via toxicity). This work aimed to provide a perception regarding the risks associated with the utilization of nanoparticle-based formulations with a particular focus on assays applied to assess the cytotoxicity of nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA