Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biomolecules ; 14(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38927081

RESUMEN

Intracerebral hemorrhage (ICH) is a life-threatening condition associated with significant morbidity and mortality. This study investigates transcriptomic alterations in rodent models of ICH and severe ICH to shed light on the genetic pathways involved in hemorrhagic brain injury. We performed principal component analysis, revealing distinct principal component segments of normal rats compared to ICH and severe ICH rats. We employed heatmaps and volcano plots to identify differentially expressed genes and utilized bar plots and KEGG pathway analysis to elucidate the molecular pathways involved. We identified a multitude of differentially expressed genes in both the ICH and severe ICH models. Our results revealed 5679 common genes among the normal, ICH, and severe ICH groups in the upregulated genes group, and 1196 common genes in the downregulated genes, respectively. A volcano plot comparing these groups further highlighted common genes, including PDPN, TIMP1, SERPINE1, TUBB6, and CD44. These findings underscore the complex interplay of genes involved in inflammation, oxidative stress, and neuronal damage. Furthermore, pathway enrichment analysis uncovered key signaling pathways, including the TNF signaling pathway, protein processing in the endoplasmic reticulum, MAPK signaling pathway, and Fc gamma R-mediated phagocytosis, implicated in the pathogenesis of ICH.


Asunto(s)
Hemorragia Cerebral , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Transcriptoma , Animales , Hemorragia Cerebral/genética , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patología , Ratas , Masculino , Perfilación de la Expresión Génica , Transducción de Señal/genética , Regulación de la Expresión Génica , Análisis de Componente Principal
2.
Life (Basel) ; 14(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38541637

RESUMEN

The intricate relationship between alcohol consumption and intracerebral hemorrhage (ICH) presents a nuanced field of study, especially concerning the dose-dependent impact on secondary brain injury (SBI). Recognizing the established risks associated with heavy drinking, this review delves deeper into the less understood territories of low to moderate alcohol consumption. By systematically analyzing recent studies, we uncover critical insights into how varying alcohol intake levels modulate ICH risk through mechanisms such as microglial activation, oxidative stress, and the protective potential of polyphenols. This analysis extends beyond the hypertensive effects of heavy alcohol use to explore the complex molecular pathophysiology involved in alcohol-related ICH. Our findings indicate that while heavy alcohol use unequivocally exacerbates ICH risk, moderate consumption and its associated polyphenols may offer neuroprotective effects against SBI, albeit within a finely balanced threshold. This review highlights the significant gaps in current understanding and underscores the urgent need for targeted research to elucidate these complex interactions. Through this comprehensive examination, we aim to inform more nuanced public health policies and intervention strategies, taking into account the diverse effects of alcohol consumption on ICH risk.

3.
JMIR Res Protoc ; 13: e55662, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466979

RESUMEN

BACKGROUND: In recent years, advancements in cancer treatment have enabled cancer cell inhibition, leading to improved patient outcomes. However, the side effects of chemotherapy, especially leukopenia, impact patients' ability to tolerate their treatments and affect their quality of life. Traditional Chinese medicine is thought to provide complementary cancer treatment to improve the quality of life and prolong survival time among patients with cancer. OBJECTIVE: This study aims to evaluate the effectiveness of Chinese herbal medicine (CHM) as a complementary treatment for neutropenia prevention and immunity modulation during chemotherapy in patients with breast cancer. METHODS: We will conduct a real-world pragmatic clinical trial to evaluate the effectiveness of CHM as a supplementary therapy to prevent neutropenia in patients with breast cancer undergoing chemotherapy. Patients will be classified into CHM or non-CHM groups based on whether they received CHM during chemotherapy. Using generalized estimating equations or repeated measures ANOVA, we will assess differences in white blood cell counts, absolute neutrophil counts, immune cells, and programmed cell death protein 1 (PD-1) expression levels between the 2 groups. RESULTS: This study was approved by the research ethics committee of Hualien Tzu Chi Hospital (IRB 110-168-A). The enrollment process began in September 2021 and will stop in December 2024. A total of 140 patients will be recruited. Data cleaning and analysis are expected to finish in the middle of 2025. CONCLUSIONS: Traditional Chinese medicine is the most commonly used complementary medicine, and it has been reported to significantly alleviate chemotherapy-related side effects. This study's findings may contribute to developing effective interventions targeting chemotherapy-related neutropenia among patients with breast cancer in clinical practice. TRIAL REGISTRATION: International Traditional Medicine Clinical Trial Registry ITMCTR2023000054; https://tinyurl.com/yc353hes. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/55662.

4.
Tzu Chi Med J ; 35(1): 1-10, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866349

RESUMEN

Intracerebral hemorrhage (ICH) is the most lethal type of cerebral stroke without effective therapy. Although clinical trials with various surgeries have been conducted, none have improved clinical outcomes compared to the current medical management for ICH. Several ICH animal models, including autologous blood injection, collagenase injection, thrombin injection, and microballoon inflation methods, have been developed to elucidate the underlying mechanisms of ICH-induced brain injury. These models could also be used for discovering new therapy for ICH preclinically. We summarize the existing ICH animal models and the evaluation parameters used to measure the disease outcomes. We conclude that these models, resembling the different aspects of ICH pathogenesis, have their advantages and disadvantages. None of the current models closely represent the severity of ICH seen in clinical settings. More appropriate models are needed to streamline ICH's clinical outcomes and be used for validating newly developed treatment protocols.

5.
Cell Death Dis ; 14(2): 128, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792604

RESUMEN

During intracerebral hemorrhage (ICH), hematoma formation at the site of blood vessel damage results in local mechanical injury. Subsequently, erythrocytes lyse to release hemoglobin and heme, which act as neurotoxins and induce inflammation and secondary brain injury, resulting in severe neurological deficits. Accelerating hematoma resorption and mitigating hematoma-induced brain edema by modulating immune cells has potential as a novel therapeutic strategy for functional recovery after ICH. Here, we show that intracerebroventricular administration of recombinant human cerebral dopamine neurotrophic factor (rhCDNF) accelerates hemorrhagic lesion resolution, reduces peri-focal edema, and improves neurological outcomes in an animal model of collagenase-induced ICH. We demonstrate that CDNF acts on microglia/macrophages in the hemorrhagic striatum by promoting scavenger receptor expression, enhancing erythrophagocytosis and increasing anti-inflammatory mediators while suppressing the production of pro-inflammatory cytokines. Administration of rhCDNF results in upregulation of the Nrf2-HO-1 pathway, but alleviation of oxidative stress and unfolded protein responses in the perihematomal area. Finally, we demonstrate that intravenous delivery of rhCDNF has beneficial effects in an animal model of ICH and that systemic application promotes scavenging by the brain's myeloid cells for the treatment of ICH.


Asunto(s)
Edema Encefálico , Lesiones Encefálicas , Animales , Humanos , Hemorragia Cerebral/complicaciones , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/patología , Inflamación/complicaciones , Hematoma/tratamiento farmacológico , Hematoma/complicaciones , Hematoma/metabolismo , Inmunidad Innata , Modelos Animales de Enfermedad , Edema Encefálico/complicaciones , Factores de Crecimiento Nervioso/uso terapéutico
6.
Mol Neurobiol ; 60(1): 369-381, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36269542

RESUMEN

Neuroinflammation plays a critical role in the neurological recovery of spinal cord injury (SCI). Adenosine can modulate neuroinflammation, whose uptake is mediated by nucleoside transporters. This study aimed to investigate the roles of equilibrative nucleoside transporter 1 (Ent1) in the inflammatory responses and functional recovery of SCI. Spinal cord contusion at the T10 dorsal portion was induced in mice to cause partial paralysis of the hindlimbs. Genetic deletion and pharmacological inhibition of Ent1 were used to evaluate the role of Ent1 in SCI. The outcomes were evaluated in terms of the Basso Mouse Scale (BMS), gait analysis, astrogliosis, microgliosis, and cytokine levels on day 14 post-injury. As a result, Ent1 deletion reduced neuroinflammation and improved the BMS score (4.88 ± 0.35 in Ent1-/- vs. 3.78 ± 1.09 in Ent1+/+) and stride length (3.74 ± 0.48 cm in Ent1-/- vs. 2.82 ± 0.78 cm in Ent1+/+) of mice with SCI. Along with the reduced lesion size, more preserved neurons were identified in the perilesional area of mice with Ent1 deletion (102 ± 23 in Ent1-/- vs. 73 ± 10 in Ent1+/+). The results of pharmacological inhibition were consistent with the findings of genetic deletion. Moreover, Ent1 inhibition decreased the protein level of complement 3 (an A1 marker), but increased the levels of S100 calcium-binding protein a10 (an A2 marker) and transforming growth factor-ß, without changing the levels of inducible nitric oxide synthase (a M1 marker) and arginase 1 (a M2 marker) at the injured site. These findings indicate the important role of Ent1 in the pathogenesis and treatment of SCI.


Asunto(s)
Tranportador Equilibrativo 1 de Nucleósido , Traumatismos de la Médula Espinal , Animales , Ratones , Adenosina/farmacología , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Enfermedades Neuroinflamatorias , Neuronas/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico
7.
CNS Neurosci Ther ; 28(1): 92-104, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34643338

RESUMEN

AIMS: The effects of subthalamic nucleus (STN)-deep brain stimulation (DBS) on brain topological metrics, functional connectivity (FC), and white matter integrity were studied in levodopa-treated Parkinson's disease (PD) patients before and after DBS. METHODS: Clinical assessment, resting-state functional MRI (rs-fMRI), and diffusion tensor imaging (DTI) were performed pre- and post-DBS in 15 PD patients, using a within-subject design. The rs-fMRI identified brain network topological metric and FC changes using graph-theory- and seed-based methods. White matter integrity was determined by DTI and tract-based spatial statistics. RESULTS: Unified Parkinson's Disease Rating Scale III (UPDRS- III) scores were significantly improved by 35.3% (p < 0.01) after DBS in PD patients, compared with pre-DBS patients without medication. Post-DBS PD patients showed a significant decrease in the graph-theory-based degree and cost in the middle temporal gyrus and temporo-occipital part-Right. Changes in FC were seen in four brain regions, and a decrease in white matter integrity was seen in the left anterior corona radiata. The topological metrics changes were correlated with Beck Depression Inventory II (BDI-II) and the FC changes with UPDRS-III scores. CONCLUSION: STN-DBS modulated graph-theoretical metrics, FC, and white matter integrity. Brain connectivity changes observed with multi-modal imaging were also associated with postoperative clinical improvement. These findings suggest that the effects of STN-DBS are caused by brain network alterations.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson/terapia , Sustancia Blanca/patología , Anciano , Encéfalo/patología , Imagen de Difusión Tensora , Femenino , Humanos , Levodopa/uso terapéutico , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/cirugía , Núcleo Subtalámico/patología
8.
Front Mol Neurosci ; 14: 682775, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248500

RESUMEN

Intracerebral hemorrhage (ICH) is a life-threatening type of stroke that disrupts the normal neurological function of the brain. Clinical studies have reported a non-linear J-shaped association between alcohol consumption levels and the occurrence of cerebral stroke. Specifically, alcohol intoxication increases stroke incidence, while moderate alcohol pre-conditioning decreases stroke frequency and improves outcomes. Although alcohol pre-consumption is likely a crucial player in ICH, the underlying mechanism remains unclear. We performed 1-h alcohol pre-conditioning followed by ICH induction in Sprague-Dawley (SD) rats to investigate the role of alcohol pre-conditioning in ICH. Interestingly, behavioral test analysis found that ethanol intoxication (3 g/kg) aggravated ICH-induced neurological deficits, but moderate ethanol pre-conditioning (0.75 g/kg) ameliorated ICH-induced neurological deficits by reducing the oxidative stress and proinflammatory cytokines release. Moreover, we found that moderate ethanol pretreatment improved the striatal endoplasmic reticulum (ER) homeostasis by increasing the chaperone protein expression and reducing oxidative stress and apoptosis caused by ICH. Our findings show that the mechanism regulated by moderate ethanol pre-conditioning might be beneficial for ICH, indicating the importance of ER homeostasis, oxidative stress, and differential cytokines release in ICH.

9.
Int J Med Sci ; 17(12): 1854-1863, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714088

RESUMEN

Bu Yang Huan Wu decoction (BYHW) is a traditional Chinese medicine (TCM) that consists of several herbs and has been used in patients with ischemic stroke for centuries. Although powdered formula of BYHW has widely been prescribed in clinic nowadays, evidence-based effectiveness and mechanism of action of BYHW powdered product in stroke remain to be characterized. Adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 90 min followed by reperfusion for 24 h (ischemia/reperfusion; I/R) or sham surgery. After I/R, the rats were then given low dose (0.5 g/kg) and high dose (2.5 g/kg) of BYHW or vehicle by oral gavage twice a day for seven consecutive days. The results showed that I/R induced obvious cerebral infarction and neurobehavioral defects, in parallel with histological aberrations and extensive signaling of proinflammatory cytokines, including tumor necrosis factor (TNF-α) and interleukin-6 (IL-6), in the stroke model. Post-I/R treatment with BYHW powdered product significantly reduced the infarct area and ameliorated neurofunctional defects in a dose-dependent manner. The dose dependence was associated with TNF-α downregulation and interleukin-10 (IL-10) induction. In summary, the present findings demonstrated that BYHW powdered product exhibited therapeutic efficacy for experimental stroke and a higher dose treatment may strengthen the effectiveness via inflammatory modulation.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Inflamación/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/genética , Inflamación/patología , Interleucina-10/genética , Interleucina-6/genética , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/patología , Medicina Tradicional China , Polvos/farmacología , Ratas , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/genética
10.
Cells ; 9(3)2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204394

RESUMEN

The endoplasmic reticulum (ER) is an intracellular organelle that performs multiple functions, such as lipid biosynthesis, protein folding, and maintaining intracellular calcium homeostasis. Thus, conditions wherein the ER is unable to fold proteins is defined as ER stress, and an inbuilt quality control mechanism, called the unfolded protein response (UPR), is activated during ER stress, which serves as a recovery system that inhibits protein synthesis. Further, based on the severity of ER stress, the response could involve both proapoptotic and antiapoptotic phases. Intracerebral hemorrhage (ICH) is the second most common subtype of cerebral stroke and many lines of evidence have suggested a role for the ER in major neurological disorders. The injury mechanism during ICH includes hematoma formation, which in turn leads to inflammation, elevated intracranial pressure, and edema. A proper understanding of the injury mechanism(s) is required to effectively treat ICH and closing the gap between our current understanding of ER stress mechanisms and ICH injury can lead to valuable advances in the clinical management of ICH.


Asunto(s)
Hemorragia Cerebral/patología , Estrés del Retículo Endoplásmico , Animales , Muerte Celular , Hemorragia Cerebral/terapia , Humanos , Modelos Biológicos , Transducción de Señal
11.
Int Immunopharmacol ; 82: 106357, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32151959

RESUMEN

Dendritic cell (DC)-based vaccine has been established in tumor immunotherapy. Importantly, the efficiency of anti-tumor T-cells in draining lymph nodes is dependent on the status of DCs surrounding in tumors. It has been shown that Indoleamine 2,3-dioxygenase (IDO) plays a key role to induce tolerogenic DCs in tumor microenvironment, and tyrosine kinase inhibitors (TKIs) can suppress the function of IDO in DCs. However, the stimulatory effect of TKI-modified DCs on T cells remains unclear. In this report, we found that one type of TKI-dasatinib can modify DCs to increasing the activation of allogenic T cells. These TKI-modified DCs delayed the onset of B16 melanoma progression in mice. In mechanistic studies, TKIs did not increase the maturation but reduce the expression and phosphorylation levels of IDO and IDO mediated tryptophan metabolism in DCs. In addition, the suppressive effect of TKIs on tryptophan metabolism may be caused by blocking c-Kit pathway in DCs. Furthermore, the increased phosphorylation of general control nonderepressible (GCN2) and decreased expression of aryl hydrocarbon receptor (AhR)/aryl hydrocarbon receptor nuclear translocator (ARNT) were observed in the T cells activated by TKI-modified DCs, suggesting the enhancement of effector function of T cells. These results indicate that TKI could be used to modulate DC immunogenic activity and may potentially be applied in DC-based cancer immunotherapy.

12.
Sci Rep ; 10(1): 3276, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32094396

RESUMEN

There are limited studies on the association between systemic autoimmune rheumatic diseases (SARDs) and leptospirosis. Therefore, this study aims to identify the effects of leptospirosis on the risks of developing SARDs with a nationwide retrospective cohort study. Patients with leptospirosis who did not have a diagnosis of SARDs before the index date were enrolled from the Taiwan National Health Insurance Research Database between 2000 and 2010, as the leptospirosis cohort. For each patient with leptospirosis, one control without a history of leptospirosis and SARDs was randomly selected (non-leptospirosis cohort). Cox proportional hazards regression models were used to analyze the risk of SARDs according to sex, age, and comorbidities. Among the 23 million people in the cohort, 3,393 patients with leptospirosis (68.91% men, mean age 52.65 years) and 33,930 controls were followed for 18,778 and 232,999 person-years, respectively. The incidence of SARDs was higher in the leptospirosis cohort than in the non-leptospirosis cohort (1.38 vs 0.33 per 1000 person-years), with a hazard ratio (HR) of 4.42 (95% confidence interval [CI] = 2.82-6.92). The risk of developing SARDs was highest for leptospirosis patients aged ≥65 years (HR = 2.81% CI = 1.07-7.36) compared with patients aged ≤39 years. Patients with leptospirosis have a 4.42-fold higher risk of SARDs than that in the general population. Further research is warranted to investigate the mechanism underlying this association.


Asunto(s)
Enfermedades Autoinmunes/complicaciones , Leptospirosis/complicaciones , Adulto , Anciano , Comorbilidad , Bases de Datos Factuales , Femenino , Humanos , Pacientes Internos , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Sistema de Registros , Estudios Retrospectivos , Factores de Riesgo , Taiwán/epidemiología , Adulto Joven
13.
Biomolecules ; 10(1)2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31935997

RESUMEN

Intracerebral hemorrhage (ICH) causes an accumulation of blood in the brain parenchyma that disrupts the normal neurological function of the brain. Despite extensive clinical trials, no medical or surgical therapy has shown to be effective in managing ICH, resulting in a poor prognosis for the patients. Urocortin (UCN) is a 40-amino-acid endogenous neuropeptide that belongs to the corticotropin-releasing hormone (CRH) family. The effect of UCN is activated by binding to two G-protein coupled receptors, CRH-R1 and CRH-R2, which are expressed in brain neurons and glial cells in various brain regions. Current research has shown that UCN exerts neuroprotective effects in ICH models via anti-inflammatory effects, which generally reduced brain edema and reduced blood-brain barrier disruption. These effects gradually help in the improvement of the neurological outcome, and thus, UCN may be a potential therapeutic target in the treatment of ICH. This review summarizes the data published to date on the role of UCN in ICH and the possible protective mechanisms underlined.


Asunto(s)
Hemorragia Cerebral/metabolismo , Urocortinas/metabolismo , Urocortinas/farmacología , Animales , Encéfalo/metabolismo , Hemorragia Cerebral/fisiopatología , Hemorragia Cerebral/terapia , Hormona Liberadora de Corticotropina/metabolismo , Hormona Liberadora de Corticotropina/farmacología , Humanos , Fármacos Neuroprotectores/farmacología , Urocortinas/fisiología
14.
Cells ; 8(11)2019 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-31717886

RESUMEN

BACKGROUND: Neuroinflammation is a hallmark in intracerebral hemorrhage (ICH) that induces secondary brain injury, leading to neuronal cell death. ER stress-triggered apoptosis and proteostasis disruption caused neuroinflammation to play an important role in various neurological disorders. The consequences of ER stress and proteostasis disruption have rarely been studied during the course of ICH development. METHODS: ICH was induced by collagenase VII-S intrastriatal infusion. Animals were sacrificed at 0, 3, 6, 24, and 72 h post-ICH. Rats were determined for body weight changes, hematoma volume, and neurological deficits. Brain tissues were harvested for molecular signaling analysis either for ELISA, immunoblotting, immunoprecipitation, RT-qPCR, protein aggregation, or for histological examination. A non-selective proteasome inhibitor, MG132, was administered into the right striatum three hours prior to ICH induction. RESULTS: ICH-induced acute proteasome over-activation caused the early degradation of the endoplasmic reticulum (ER) chaperone GRP78 and IκB protein. These exacerbations were accompanied by the elevation of pro-apoptotic CCAAT-enhancer-binding protein homologous protein (CHOP) and pro-inflammatory cytokines expression via nuclear factor-kappa B (NF-κB) signal activation. Pre-treatment with proteasome inhibitor MG132 significantly ameliorated the ICH-induced ER stress/proteostasis disruption, pro-inflammatory cytokines, neuronal cells apoptosis, and neurological deficits. CONCLUSIONS: ICH induced rapid proteasome over-activation, leading to an exaggeration of the ER stress/proteostasis disruption, and neuroinflammation might be a critical event in acute ICH pathology.


Asunto(s)
Hemorragia Cerebral/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Apoptosis , Hemorragia Cerebral/fisiopatología , Citocinas , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Inflamación/patología , Leupeptinas/farmacología , Masculino , FN-kappa B/metabolismo , Neuroinmunomodulación/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal
15.
J Clin Neurosci ; 68: 235-242, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31420273

RESUMEN

This study used Voxel-based morphometry (VBM) and resting-state functional magnetic resonance imaging (rs-fMRI) to investigate changes in brain structure and networks functional connectivity, respectively. We tried to identify the potential biomarkers in Parkinson's disease (PD) progression. We recruited nine idiopathic PD patients and seven healthy control participants (HC group) who were age-matched to undergo T1-weighted images and rs-fMRI on 1.5 T. Brain structure differences were analyzed by VBM. Topological properties of networks functional connectivity were analyzed by graph theory. Thirty-two nodes of 8 networks and 133 nodes of interest then were identified with graph theory approaches. VBM examinations showed significant decreases of brain gray matter regions including the left temporal lobe, left middle temporal, middle temporal gyrus, parietal lobe, postcentral gyrus, left inferior parietal gyrus, medial frontal gyrus and supplement motor area in PD patients compared to the HC group. The 32 ROI of networks topological metrics measurement in PD demonstrated increases of global efficiency, cost, and degree in frontoparietal PPC (R) network, but decreases of local efficiency, clustering coefficient, and average path length in salience ACC, dorsal attention FEF (L), and salience aInsula (R) networks, respectively. All 165 ROI connectomes showed eight connections intensity changes, that decrease in OP r to frontoparietal PPC, putamen r to cereb11, and SFG l to Ver8 in PD. These results suggest that the graph theory and the network topological metrics measurement may be the potential biomarkers in PD to evaluate the disease progress and to monitor the therapeutic results.


Asunto(s)
Encéfalo/fisiopatología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Teóricos , Enfermedad de Parkinson/fisiopatología , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Conectoma/métodos , Femenino , Humanos , Persona de Mediana Edad , Modelos Neurológicos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología
16.
Regen Med ; 14(6): 571-583, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31115255

RESUMEN

Aim: The therapeutic effects of human wisdom teeth-derived neuronal stem cell (tNSC) cotreatment with granulocyte-colony-stimulating factor (G-CSF) were evaluated for contusion-induced spinal cord injury in rats. Materials & methods: 7 days after contusion, tNSCs were transplanted to the injury site and followed by G-CSF cotreatment for 5 days. Behavioral deficits were evaluated by the Basso, Beattie and Bresnahan test. The injury site was collected for immunohistochemistry analysis. Results: The Basso, Beattie and Bresnahan test significantly improved in the cotreated group compared with the tNSCs or G-CSF single treatment groups. However, inflammation indices did not differ among the three groups. In vitro experiment demonstrated that tNSCs express both G-CSF and its relevant receptor. G-CSF enhanced tNSC proliferation and neurotrophins secretion in vitro. Conclusion: This study demonstrated that G-CSF enhances neurotrophins secretion of tNSCs, and might help improving functional recovery from spinal cord injury in rats if they were given together.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/farmacología , Células-Madre Neurales , Traumatismos de la Médula Espinal , Trasplante de Células Madre , Animales , Xenoinjertos , Humanos , Masculino , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Células-Madre Neurales/trasplante , Ratas , Ratas Long-Evans , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia
17.
J Stroke Cerebrovasc Dis ; 27(12): 3493-3502, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30205999

RESUMEN

BACKGROUND: Alcoholism is one of the risk factors for cerebrovascular diseases. Our previous study demonstrated that acute alcohol intoxication enhances brain injury and neurological impairment in rats suffering from intracerebral hemorrhage (ICH). We plan to investigate the effect of chronic alcohol consumption (CAC) in rats with ICH by magnetic resonance imaging (MRI). METHODS: Sixteen Sprague-Dawley male rats were divided into 2 groups: CAC group (fed with 10% alcohol drinking water for 4 weeks, n = 8), and Control group (plain drinking water, n = 8). ICH was induced by collagenase infusion into the right striata of all rats. Coronal T1-weighted imaging, T2-weighted imaging, T2*-weighted imaging, and diffusion-weighted imaging were generated with a 3.0T MRI scanner to investigate the changes of hemorrhagic volume and edema throughout the injury and recovery stages of ICH in rats. RESULTS: T2-weighted imaging is ideal for monitoring hematoma volume in rats. The hematoma volume was larger in the CAC group than in the control group (P < .001), however, did not correlate to post-ICH progressive edema formation (P > .7), and neurological impairment (P > .28) between the 2 groups, respectively. DISCUSSION: Although our findings indicate that CAC induces larger hematoma in rats with ICH, the underlying mechanism should be studied in the future.


Asunto(s)
Alcoholismo/complicaciones , Alcoholismo/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/etiología , Imagen por Resonancia Magnética , Consumo de Bebidas Alcohólicas , Animales , Encéfalo/efectos de los fármacos , Edema Encefálico/diagnóstico por imagen , Edema Encefálico/etiología , Modelos Animales de Enfermedad , Imagen por Resonancia Magnética/métodos , Masculino , Distribución Aleatoria , Ratas Sprague-Dawley
18.
Cell Physiol Biochem ; 48(6): 2231-2246, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30114701

RESUMEN

BACKGROUND/AIMS: Radix Angelica Sinensis (danggui in Chinese) is widely used in traditional chinese medicine (TCM). N-butylidenephthalide (BP), a bioactive compound in danggui, is a potential antitumor agent for various cancer types. However, its clinical effect and mechanism in the treatment of gastric cancer remain undetermined. METHODS: The in vivo protective effect of danggui in patients with gastric cancer were validated using data from Taiwan's National Health Insurance Research Database (NHIRD). The genes induced by BP-treatment were analyzed by whole transcriptome RNA sequencing (RNA-seq) and validated by real-time PCR, western blot and siRNA transfection. The effect of BP on AGS cell migration and invasion was evaluated in transwell assays. The antitumor effects of BP were evaluated in vivo in an AGS xenograft animal model. RESULTS: Danggui users were found to have an increased survival rate when compared with danggui nonusers (log-rank test p = 0.002) . The use of danggui highly associated with decreased mortality (the adjusted hazard ratio (HR) of danggui user was 0.72 [95 % CI, 0.57-0.92] (p = 0.009). The in vitro results showed that BP inhibited gastric cancer cell proliferation, and triggered cellular apoptosis depending on the activation of mitochondrial apoptotic pathway. Using RNA-seq analysis we found that REDD1 was the highest transcript induced by BP in gastric cancer cells. BP induce an increase of REDD1 expression that inhibits mTOR signaling, thus inhibiting gastric cancer growth. We used RNA interference to demonstrate that the knock-down of REDD1 attenuated the BP-induced mTORC1 activation and growth inhibition. BP suppressed the growth of AGS xenografts tumor in vivo. CONCLUSION: Danggui can prolong the survival rate of gastric cancer patients in Taiwan. BP caused gastric cancer cell death through the activation of mitochondria-intrinsic pathway and induced the REDD1 expression leading to mTOR signal pathway inhibition in gastric cancer cells. BP inhibited the in vivo growth of AGS xenograft tumors. These results may provide the basis for a new therapeutic approach toward the treatment of gastric cancer progression.


Asunto(s)
Angelica sinensis/química , Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Angelica sinensis/metabolismo , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Estudios de Casos y Controles , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Anhídridos Ftálicos/química , Anhídridos Ftálicos/farmacología , Anhídridos Ftálicos/uso terapéutico , Modelos de Riesgos Proporcionales , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Tasa de Supervivencia , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Factores de Transcripción/agonistas , Transcriptoma/efectos de los fármacos
19.
Ci Ji Yi Xue Za Zhi ; 30(1): 5-9, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29643709

RESUMEN

OBJECTIVE: Spontaneous intracerebral hemorrhage (ICH) accounts for 10%-15% of all strokes and causes high mortality and morbidity. In the previous study, we demonstrated that ethanol could aggravate the severity of brain injury after ICH by increasing neuroinflammation and oxidative stress. In this study, we further investigate the acute effects of ethanol on brain injury within 24 h after ICH. MATERIALS AND METHODS: Totally, 66 male Sprague-Dawley rats were assigned randomly into two groups: saline pretreatment before ICH (saline + ICH), and ethanol pretreatment before ICH (ethanol + ICH). Normal saline (10 mL/kg) or ethanol (3 g/kg, in 10 mL/kg normal saline) was administered intraperitoneally 1 h before induction of experimental ICH. Bacterial collagenase VII-S (0.23 U in 1.0 µL sterile saline) was injected into the right striatum to induce ICH in the rats. We evaluated the hematoma expansion, hemodynamic parameters (heart rate and blood pressure), activated partial thromboplastin time (aPTT), prothrombin time (PT), and striatal matrix metallopeptidase 9 (MMP-9) expressions at 3, 6, 9, and 24 h after ICH. RESULTS: The ethanol + ICH group exhibited decreased hematoma at 3 h after ICH; nevertheless, there was a larger hematoma compared with the saline + ICH group at 9 and 24 h after ICH. The ethanol + ICH group had lower blood pressure at 3, 6, and 9 h post-ICH, but both groups maintained similar heart rates after ICH. There was no significant difference in the aPTT and PT between the two groups. Incremental ethanol concentrations had no influence on collagenase VII-S activity at 120 min in vitro. MMP-9 expression was upregulated in the right striata of the ethanol + ICH group, especially at 3 and 9 h after ICH. CONCLUSION: Ethanol delayed hematoma formation in the first 3 h due to a hypotensive effect; however, the accelerated growth of hematomas after 9 h may be a sequela of ethanol-induced MMP-9 activation.

20.
BMC Complement Altern Med ; 17(1): 523, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29207978

RESUMEN

BACKGROUND: N-butylidenephthalide (BP) isolated from Radix Angelica Sinensis (Danggui) exhibits anti-tumorigenic effect in various cancer cells both in vivo and in vitro. The effect of BP in bladder cancer treatment is still unclear and worth for further investigate. METHODS: Changes of patients with bladder cancer after Angelica Sinensis exposure were evaluated by analysis of Taiwan's National Health Insurance Research Database (NHIRD) database. The anti-proliferative effect of BP on human bladder cancer cells was investigated and their cell cycle profiles after BP treatment were determined by flow cytometry. BP-induced apoptosis was demonstrated by Annexin V-FITC staining and TUNEL assay, while the expressions of apoptosis-related proteins were determined by western blot. The migration inhibitory effect of BP on human bladder cancer cells were shown by trans-well and wound healing assays. Tumor model in NOD-SCID mice were induced by injection of BFTC human bladder cancer cells. RESULTS: The correlation of taking Angelica sinensis and the incidence of bladder cancer in NHIRD imply that this herbal product is worth for further investigation. BP caused bladder cancer cell death in a time- and dose- dependent manner and induced apoptosis via the activation of caspase-9 and caspase-3. BP also suppressed the migration of bladder cancer cells as revealed by the trans-well and wound healing assays. Up-regulation of E-cadherin and down-regulation of N-cadherin were evidenced by real-time RT-PCR analysis after BP treatment in vitro. Besides, in combination with BP, the sensitivity of these bladder cancer cells to cisplatin increased significantly. BP also suppressed BFTC xenograft tumor growth, and caused 44.2% reduction of tumor volume after treatment for 26 days. CONCLUSIONS: BP caused bladder cancer cell death through activation of mitochondria-intrinsic pathway. BP also suppressed the migration and invasion of these cells, probably by modulating EMT-related genes. Furthermore, combination therapy of BP with a lower dose of cisplatin significantly inhibited the growth of these bladder cancer cell lines. The incidence of bladder cancer decreased in patients who were exposed to Angelica sinensis, suggesting that BP could serve as a potential adjuvant in bladder cancer therapy regimen.


Asunto(s)
Angelica sinensis/química , Antineoplásicos/farmacología , Anhídridos Ftálicos/farmacología , Extractos Vegetales/farmacología , Neoplasias de la Vejiga Urinaria/metabolismo , Adulto , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Persona de Mediana Edad , Metástasis de la Neoplasia , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...