Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Talanta ; 274: 125930, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537346

RESUMEN

Salmonella typhimurium, as a major foodborne pathogen, poses a serious threat to public health safety worldwide. Here, we present a colorimetric biosensor based on aptamer recognition-induced multi-DNA release and peroxidase-mimicking three-way junction DNA-silver/platinum bimetallic nanoclusters (3WJ/DNA-Ag/PtNCs) for the detection of S. typhimurium. In this method, S. typhimurium specifically binds to the aptamer and releases multiple cDNAs to form the three-way junction DNA structure and synthesize silver/platinum bimetallic nanoclusters, which induces signaling changes. Interestingly and importantly, the use of 3WJ/DNA as the template for synthesizing Ag/PtNCs gives the method an extremely low background signal. Under the optimal conditions, the constructed biosensor had a linear response range of 2.6 × 102-2.6 × 106 CFU/mL and a detection limit of 2.6 × 102 CFU/mL for the detection of S. typhimurium. In addition, the proposed method can effectively detect S. typhimurium in milk.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Colorimetría , Nanopartículas del Metal , Platino (Metal) , Salmonella typhimurium , Plata , Salmonella typhimurium/aislamiento & purificación , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Colorimetría/métodos , Platino (Metal)/química , Plata/química , Nanopartículas del Metal/química , Leche/microbiología , Leche/química , Límite de Detección , ADN/química , Animales , Peroxidasa/química , Peroxidasa/metabolismo
2.
Compr Rev Food Sci Food Saf ; 23(1): e13295, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284598

RESUMEN

Food contaminants present a significant threat to public health. In response to escalating global concerns regarding food safety, there is a growing demand for straightforward, rapid, and sensitive detection technologies. Noble metal nanoclusters (NMNCs) have garnered considerable attention due to their superior attributes compared to other optical materials. These attributes include high catalytic activity, excellent biocompatibility, and outstanding photoluminescence properties. These features render NMNCs promising candidates for crafting nanosensors for food contaminant detection, offering the potential for the development of uncomplicated, swift, sensitive, user-friendly, and cost-effective detection approaches. This review investigates optical nanosensors based on NMNCs, including the synthesis methodologies of NMNCs, sensing strategies, and their applications in detecting food contaminants. Furthermore, it involves a comparative assessment of the applications of NMNCs in optical sensing and their performance. Ultimately, this paper imparts fresh perspectives on the forthcoming challenges. Hitherto, optical (particularly fluorescent) nanosensors founded on NMNCs have demonstrated exceptional sensing capabilities in the realm of food contaminant detection. To enhance sensing performance, future research should prioritize atomically precise NMNCs synthesis, augmentation of catalytic activity and optical properties, development of high-throughput and multimode sensing, integration of NMNCs with microfluidic devices, and the optimization of NMNCs storage, shelf life, and transportation conditions.


Asunto(s)
Inocuidad de los Alimentos , Nanotecnología
3.
Talanta ; 269: 125457, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039678

RESUMEN

Escherichia coli O157: H7 (E. coli O157: H7) is one of the most common foodborne pathogens and is widespread in food and the environment. Thus, it is significant for rapidly detecting E. coli O157: H7. In this study, a colorimetric aptasensor based on aptamer-functionalized magnetic beads, exonuclease III (Exo III), and G-triplex/hemin was proposed for the detection of E. coli O157: H7. The functional hairpin HP was designed in the system, which includes two parts of a stem containing the G-triplex sequence and a tail complementary to cDNA. E. coli O157: H7 competed to bind the aptamer (Apt) in the Apt-cDNA complex to obtain cDNA. The cDNA then bound to the tail of HP to trigger Exo III digestion and release the single-stranded DNA containing the G-triplex sequence. G-triplex/hemin DNAzyme could catalyze TMB to produce visible color changes and detectable absorbance signals in the presence of H2O2. Based on the optimal conditions, E. coli O157: H7 could be detected down to 1.3 × 103 CFU/mL, with a wide linear range from 1.3 × 103 to 1.3 × 107 CFU/mL. This method had a distinguished ability to non-target bacteria, which showed good specificity. In addition, the system was successfully applied to detect E. coli O157: H7 in milk samples.


Asunto(s)
Aptámeros de Nucleótidos , ADN Catalítico , Escherichia coli O157 , Escherichia coli O157/genética , Hemina , Colorimetría/métodos , ADN Complementario , Peróxido de Hidrógeno , Aptámeros de Nucleótidos/genética , Fenómenos Magnéticos , Microbiología de Alimentos
4.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36476145

RESUMEN

Milk contaminated with trace amounts of foodborne pathogens can considerably threaten food safety and public health. Therefore, rapid and accurate detection techniques for foodborne pathogens in milk are essential. Nucleic acid amplification (NAA)-based strategies are widely used to detect foodborne pathogens in milk. This review article covers the mechanisms of the NAA-based detection of foodborne pathogens in milk, including polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), rolling circle amplification (RCA), and enzyme-free amplification, among others. Key factors affecting detection efficiency and the advantages and disadvantages of the above techniques are analyzed. Potential on-site detection tools based on NAA are outlined. We found that NAA-based strategies were effective in detecting foodborne pathogens in milk. Among them, PCR was the most reliable. LAMP showed high specificity, whereas RPA and RCA were most suitable for on-site and in-situ detection, respectively, and enzyme-free amplification was more economical. However, factors such as sample separation, nucleic acid target conversion, and signal transduction affected efficiency of NAA-based strategies. The lack of simple and effective sample separation methods to reduce the effect of milk matrices on detection efficiency was noteworthy. Further research should focus on simplifying, integrating, and miniaturizing microfluidic on-site detection platforms.

5.
Front Plant Sci ; 13: 956374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092420

RESUMEN

Range expansion requires peripheral populations to shift adaptive optima to breach range boundaries. Opportunities for range expansion can be assessed by investigating the associations of core-periphery environmental and genetic differences. This study investigates differences in the core-periphery adaptation of Ammopiptanthus mongolicus, a broad-leaved evergreen shrub species in a relatively homogeneous temperate Asian desert environment, to explore the environmental factors that limit the expansion of desert plants. Temperate deserts are characterized by severe drought, a large diurnal temperature range, and seasonality. Long-standing adaptation to the harsh desert environment may confine the genetic diversity of A. mongolicus, despite its distribution over a wide range of longitude, latitude, and altitude. Since range edges defined by climate niches may have different genetic responses to environmental extremes, we compared genome-wide polymorphisms between nine environmental core populations and ten fragmented peripheral populations to determine the "adaptive peripheral" populations. At least four adaptive peripheral populations had similar genetic-environmental association patterns. High elevations, summer drought, and winter cold were the three main determinants of converging these four adaptive peripheral populations. Elevation mainly caused similar local climates among different geographic regions. Altitudinal adaptation resulting from integrated environmental-genetic responses was a breakthrough in breaching niche boundaries. These peripheral populations are also located in relatively humid and warmer environments. Relaxation of the drought and cold constraints facilitated the genetic divergence of these peripheral populations from the core population's adaptive legacy. We conclude that pleiotropic selection synchronized adaptative divergence to cold and drought vs. warm and humid environments between the core and peripheral populations. Such parallel adaptation of peripheral populations relies on selection under a background of abundant new variants derived from the core population's standing genetic variation, i.e., integration of genetic surfing and local adaptation.

6.
Foods ; 11(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35206071

RESUMEN

Salmonella Typhimurium (S. Typhimurium) is a globally distributed foodborne pathogen, which can lead to outbreaks of foodborne infectious diseases. It is essential to guarantee food safety by timely and correct detection of S. Typhimurium. In this investigation, an original fluorescence aptasensor was constructed to detect S. Typhimurium rapidly and sensitively. Through the coupling of magnetic beads, aptamer, and gold nanoparticles (AuNPs), a fluorescence quenching system with a "sandwich structure" was established. The aptamer acted as a link, and its specific binding to S. Typhimurium could release AuNPs from the system. Meanwhile, fluorescent DNA-stabilized silver nanoclusters (DNA-AgNCs) were synthesized. The fluorescence intensity changes caused by the fluorescence resonance energy transfer between DNA-AgNCs and AuNPs were utilized to detect S. Typhimurium. The purposed aptasensor exhibited high selectivity and sensitivity with a linear response to S. Typhimurium, ranging from 3.7 × 102 to 3.7 × 105 cfu/mL. The limit of detection (LOD) was estimated to be 98 cfu/mL within 2 h 10 min. In addition, this method showed excellent application for detection of S. Typhimurium in artificially contaminated milk, with LOD reaching 3.4 × 102 cfu/mL. Therefore, the developed fluorescence aptasensor has great potential to identify S. Typhimurium in foodstuffs.

7.
Anal Chim Acta ; 1181: 338903, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34556234

RESUMEN

A novel fluorescent platform of DNA-stabilized silver nanoclusters (DNA-AgNCs) has been developed based on exonuclease III (Exo III) amplification-assisted for simple and sensitive detection of Salmonella Typhimurium (S. Typhimurium). The platform was designed by using magnetic beads, aptamer, its complementary DNA, hairpin probe (HP), Exo III, AgNO3, and NaBH4. The functionalized HP contained a cytosine-rich oligonucleotide loop (C-rich loop), which served as an effective template for the chemical reduction of Ag+ with NaBH4 to synthesize DNA-AgNCs. In the presence of S. Typhimurium, the C-rich loop was converted into an open form of ssDNA by the recycle digestion of Exo III, leading to a corresponding decrease in fluorescence intensity. Based on the fluorescence changes of the formed DNA-AgNCs, the sensitive detection of S. Typhimurium was achieved. Under the optimal conditions, a wide linear relationship was observed in the concentration of S. Typhimurium ranging from 4.6 × 102 to 4.6 × 107 cfu mL-1 with the limit of detection (LOD) being 82 cfu mL-1. The method showed good selectivity for detecting S. Typhimurium. In addition, the platform could be used for the detection of S. Typhimurium in milk samples. The LOD reached 6.6 × 102 cfu mL-1 with a good linear range, indicating that the method had excellent practicability in complex food samples.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , ADN , Exodesoxirribonucleasas , Límite de Detección , Salmonella typhimurium/genética , Plata , Espectrometría de Fluorescencia
8.
J Dairy Sci ; 104(6): 6577-6587, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33741157

RESUMEN

Bacillus cereus is one of the most important spoilage microorganisms in milk. The heat-resistant protease produced is the main factor that causes rotten, bitter off-flavors and age gelation during the shelf-life of milk. In this study, 55 strains of B. cereus were evaluated, of which 25 strains with protease production ability were used to investigate proteolytic activity and protease heat resistance. The results showed that B. cereus C58 had strong protease activity, and its protease also had the highest thermal stability after heat treatment of 70°C (30 min) and 100°C (10 min). The protease was identified as protease HhoA, with a molecular mass of 43.907 kDa. The protease activity of B. cereus C58 in UHT-sterilized whole milk (UHT milk) showed an increase with the growth of bacteria, especially during the logarithmic growth phase. In addition, the UHT milk incubated with protease from B. cereus C58 at 28°C (24 h) and 10°C (6 d) were used to evaluate the effects of protease on the quality of UHT milk, including protein hydrolysis and physical stability. The results showed that the hydrolysis of casein was κ-CN, ß-CN, and αS-CN successively, whereas whey protein was not hydrolyzed. The degree of protein hydrolysis, viscosity, and particle size of the UHT milk increased. The changes in protein and fat contents indicated that fat globules floated at 28°C and settled at 10°C, respectively. Meanwhile, confocal laser scanning microscopy images revealed that the protease caused the stability of UHT milk to decrease, thus forming age gelation.


Asunto(s)
Bacillus cereus , Leche , Animales , Calor , Péptido Hidrolasas , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA