Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Proc Natl Acad Sci U S A ; 120(28): e2302907120, 2023 Jul 11.
Article En | MEDLINE | ID: mdl-37399425

Millifluidics, the manipulation of liquid flow in millimeter-sized channels, has been a revolutionary concept in chemical processing and engineering. The solid channels that contain the liquids, though, are not flexible in their design and modification, and prevent contact with the external environment. All-liquid constructs, on the other hand, while flexible and open, are imbedded in a liquid environment. Here, we provide a route to circumvent these limitations by encasing the liquids in a hydrophobic powder in air that jams on the surface, containing and isolating flowing fluids, offering flexibility and adaptability in design, as manifest in the ability to reconfigure, graft, and segment the constructs. Along with the open nature of these powder-contained channels that allow arbitrary connections/disconnections and substance addition/extraction, numerous applications can be opened in the biological, chemical, and material arenas.

2.
Nat Commun ; 14(1): 3853, 2023 Jun 29.
Article En | MEDLINE | ID: mdl-37386038

Due to the inherent disorder and fluidity of water, precise machining of water through laser cutting are challenging. Herein we report a strategy that realizes the laser cutting machining of water through constructing hydrophobic silica nanoparticle-encased water pancakes with sub-millimeter depth. Through theoretical analysis, numerical simulation, and experimental studies, the developed process of nanoparticle-encased water pancake laser cutting and the parameters that affect cutting accuracy are verified and elucidated. We demonstrate that laser-fabricated water patterns can form diverse self-supporting chips (SSCs) with openness, transparency, breathability, liquid morphology, and liquid flow control properties. Applications of laser-fabricated SSCs to various fields, including chemical synthesis, biochemical sensing, liquid metal manipulation, patterned hydrogel synthesis, and drug screening, are also conceptually demonstrated. This work provides a strategy for precisely machining water using laser cutting, addressing existing laser machining challenges and holding significance for widespread fields involving fluid patterning and flow control in biological, chemical, materials and biomedical research.


Biomedical Research , Nanoparticles , Computer Simulation , Lasers , Water
3.
ACS Appl Mater Interfaces ; 14(9): 11999-12009, 2022 Mar 09.
Article En | MEDLINE | ID: mdl-35171580

Droplet-based microreactors often uncover fascinating phenomena and exhibit diverse functionality, which make them applicable in various fields. Liquid marbles (LMs) are non-wetting droplets coated with particles, and these features highlight their potential as microreactors. However, sophisticated experimental designs are typically hindered because it is difficult to obtain sufficient substance mixing in these miniature, damage-prone, self-supporting liquid containers. Here, we demonstrate that subjecting LMs to vertical oscillations by audio signals represents a controllable approach that allows sufficient mixing with variable dynamic modes. The characteristics and key issues in LM oscillation are systematically explored. The effects of oscillation on application potential are examined. Under oscillation conditions, homogeneous mixing can be achieved within a few seconds in LMs consisting of either water or viscous liquids. Importantly, the structures of materials synthesized in LMs can be regulated by modulating the oscillation modes. The variable modes, flexible adjustability, high efficiency, and wide applicability of this oscillation method make it a verified manipulation strategy for advancing the functionality of LM microreactors.

...