Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Clin Immunol ; 263: 110227, 2024 Jun.
Article En | MEDLINE | ID: mdl-38643891

T-DM1 (Trastuzumab Emtansine) belongs to class of Antibody-Drug Conjugates (ADC), where cytotoxic drugs are conjugated with the antibody Trastuzumab to specifically target HER2-positive cancer cells. Platelets, as vital components of the blood system, intricately influence the immune response to tumors through complex mechanisms. In our study, we examined platelet surface proteins in the plasma of patients before and after T-DM1 treatment, categorizing them based on treatment response. We identified a subgroup of platelets with elevated expression of CD63 and CD9 exclusively in patients with favorable treatment responses, while this subgroup was absent in patients with poor responses. Another noteworthy discovery was the elevated expression of CD36 in the platelet subgroups of patients exhibiting inadequate responses to treatment. These findings suggest that the expression of these platelet surface proteins may be correlated with the prognosis of T-DM1 treatment. These indicators offer valuable insights for predicting the therapeutic response to T-DM1 and may become important references in future clinical practice, contributing to a better understanding of the impact of ADC therapies and optimizing personalized cancer treatment strategies.


Ado-Trastuzumab Emtansine , Blood Platelets , Breast Neoplasms , Humans , Female , Blood Platelets/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/blood , Ado-Trastuzumab Emtansine/therapeutic use , Middle Aged , Trastuzumab/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Adult , Aged , Maytansine/therapeutic use , Maytansine/analogs & derivatives
2.
Heliyon ; 10(6): e27313, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38496857

PAD4 expression and activity were significantly up-regulated in lung cancer tissues suggesting that PAD4 could be a possible target for lung cancer treatment. In this study we had demonstrated that PAD4 expression was higher in lung cancer patients whom with lymphnode metastasis and pleural invasion. Inhibiting PAD4 with a small molecular inhibitor could induce apoptosis and suppress growth in lung cancer cells. We used RNA-sequencing to further investigate transcriptional changes that induced by PAD4 inhibition, and results suggested its affected mostly on the cell cycle, mitotic cell cycle process, p53 signaling pathway. By using image flow cytometry analysis, we found that PAD4 inhibited by YW3-56 could accumulate cells in the G1/G0 phases and reducing the fraction of G2/M and S phase cells. Quantification of different phase of mitosis in cells treated with YW3-56 revealed an increasing trend of telophase and prophase cells. Taken together, our data indicated that PAD4 inhibitor could affect cell cycle and mitosis of lung cancer cells, and targeting PAD4 could be a promising strategy for discovery novel anti-NSCLC treatments.

3.
Immunol Res ; 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38376705

Moyamoya disease (MMD) is a cerebrovascular disorder marked by progressive arterial narrowing, categorized into six stages known as Suzuki stages based on angiographic features. Growing evidence indicates a pivotal role of systemic immune and inflammatory responses in the initiation and advancement of MMD. This study employs high-dimensional mass cytometry to reveal the immunophenotypic characteristics of peripheral blood immune cells (PBMCs) at various Suzuki stages, offering insights into the progression of MMD. PBMC samples from eight patients with early-stage MMD (Suzuki stages II and III) and eight patients with later-stage MMD (Suzuki stages IV, V, and VI) were analyzed using high-dimensional mass cytometry to evaluate the frequency and phenotype of immune cell subtypes. We identified 15 cell clusters and found that the immunological features of early-stage MMD and later-stage MMD are composed of cluster variations. In this study, we confirmed that, compared to later-stage MMD, the early-stage MMD group exhibits an increase in non-classical monocytes. As the Suzuki stage level increases, the proportions of plasmacytoid DCs and monocyte-derived DCs decrease. Furthermore, T cells, monocytes, DCs, and PMN-MDSCs in the early-stage MMD group show activation of the canonical NF-κB signaling pathway. We summarized and compared the similarities and differences between early-stage MMD patients and later-stage MMD patients. There is a potential role of circulating immune dysfunction and inflammatory responses in the onset and development of MMD.

4.
Pharmacol Res ; 196: 106926, 2023 Oct.
Article En | MEDLINE | ID: mdl-37716547

Vorinostat (SAHA) is a histone deacetylase inhibitor that exerts its effects through epigenetic regulation. Specifically, SAHA can inhibit the proliferation of triple-negative breast cancer (TNBC) cells alone or in combination with other chemotherapeutic agents. Doxorubicin (DOX), a traditional chemotherapeutic drug, exhibits a potent cytotoxic effect on cancer cells while also inducing strong toxic effects. In this study, we investigated the synergistic potential of these two drugs in combination against TNBC. Our results suggested that the combination of these two drugs could enhance the inhibitory effect on cancer cell proliferation, resulting in alterations in cell mitotic phase, and suppression of cancer cell stemness. Moreover, our in vivo study unveiled that when SAHA was combined with DOX, it not only exhibited an inhibitory effect on tumor metastasis but also played a role in regulating the immune microenvironment within tumors. Overall, the combination of DOX and SAHA presents a promising avenue for innovative combination chemotherapy in the context of TNBC.

5.
Eur J Med Chem ; 258: 115619, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37421890

As a new target for tumor therapy, PAD4 protein, shows excellent antitumor activity, and phenylboronic acid (PBA) could combine with sialic acid on the tumor surface to achieve dual targeting in situ and for metastatic tumors. The purpose of this study was therefore to modify PAD4 protein inhibitors with different phenylboronic acid groups in order to obtain highly-targeted PAD4 inhibitors. The activity and mechanism of these PBA-PAD4 inhibitors were studied in vitro by MTT assay, laser confocal analysis, and flow cytometry. The effects of the compounds on primary tumor and lung metastasis in mice were evaluated in vivo using a S180 sarcoma model and a 4T1 breast cancer model. In addition, cytometry mass (CyTOF) was used to analyze the immune microenvironment, and the results show that the PAD4 inhibitor 5i modified by m-PBA at the carboxyl terminal of ornithine skeleton had the best antitumor activity. In vitro evaluation of this activity revealed that 5i could not directly kill tumor cells but had a significant inhibitory effect on tumor cell metastasis. Further mechanism studies showed that 5i could be taken up by 4T1 cells in a time-dependent manner and distributed around the cell membrane but could not be taken up by normal cells. In addition, although 5i was distributed in the cytoplasm of tumor cells while in the nucleus of neutrophils, it could both decrease the histone 3 citrullination (H3cit) in the nucleus. In vivo 4T1 tumor-bearing mouse models, 5i inhibited breast cancer growth and metastasis in a concentration-dependent manner, and NET formation in tumor tissues was significantly reduced. In conclusion, PBA-PAD4 inhibitors show high targeting of tumor cells and good safety in vivo. By specifically inhibiting PAD4 protein in the neutrophil nucleus, PBA-PAD4 inhibitors also show excellent antitumor activity toward growth and metastasis in vivo, which provides a new idea for the design of highly-targeted PAD4 inhibitors.


Extracellular Traps , Neoplasms , Mice , Animals , Neutrophils , Protein-Arginine Deiminase Type 4/metabolism , Extracellular Traps/metabolism , Neoplasms/metabolism , Tumor Microenvironment
6.
Transl Oncol ; 35: 101733, 2023 Sep.
Article En | MEDLINE | ID: mdl-37421907

Breast cancer progression and metastasis are governed by a complex interplay within the tumor immune microenvironment (TIME), involving numerous cell types. Lymph node metastasis (LNM) is a key prognostic marker associated with distant organ metastasis and reduced patient survival, but the mechanisms underlying its promotion by breast cancer stem cells (CSCs) remain unclear. Our study sought to unravel how CSCs reprogram TIME to facilitate LNM. Utilizing single-cell RNA sequencing, we profiled TIME in primary cancer and corresponding metastatic lymph node samples from patients at our institution. To verify the derived data, we cultured CSCs and performed validation assays employing flow cytometry and CyTOF. Our analysis revealed distinct differences in cellular infiltration patterns between tumor and LNM samples. Importantly, RAC2 and PTTG1 double-positive CSCs, which exhibit the highest stem-like attributes, were markedly enriched in metastatic lymph nodes. These CSCs are hypothesized to foster metastasis via activation of specific metastasis-related transcription factors and signaling pathways. Additionally, our data suggest that CSCs might modulate adaptive and innate immune cell evolution, thereby further contributing to metastasis. In summary, this study illuminates a critical role of CSCs in modifying TIME to facilitate LNM. The enrichment of highly stem-like CSCs in metastatic lymph nodes offers novel therapeutic targeting opportunities and deepens our understanding of breast cancer metastasis.

7.
Free Radic Biol Med ; 204: 326-336, 2023 08 01.
Article En | MEDLINE | ID: mdl-37244371

Hepatitis B virus (HBV) infection is still a serious public health problem. In recent years, with the increasing incidence of chronic hepatitis B (CHB) combined with nonalcoholic fatty liver disease (NAFLD), a more in-depth exploration of the pathogenesis of CHB combined with NAFLD is required. HBV can induce autophagy and use to increase replication. The removal of fat by autophagy, also known as lipophagy, is also currently considered an alternative pathway for lipid metabolism in liver cells. This degradation of autophagy prevents hepatotoxicity and steatosis. However, it is not known whether there is a correlation between HBV-related autophagy and the progression of NAFLD. We explored how HBV affects disease progression in NAFLD should be " and determined whether it is associated with HBV-associated autophagy. In this study, we constructed HBV-TG mouse high-fat diet (HFD) models and controls, and the results showed that the presence of HBV promoted the occurrence of NAFLD. We also demonstrated that HBV promotes lipid droplet accumulation in hepatocytes using HBV-stable expression cell lines HepG2.2.15 and AML12-HBV. In addition, this study also found that exogenous OA supplementation reduced HBV replication. We further studied the mechanism and found that HBV-related autophagy can promote the absorption of liver cells to lipid droplets. It can reduce the decomposition of lipid droplets by inhibiting the function of autophagolysosome, and eventually lead to the accumulation of lipid droplets in hepatocytes. In a word, HBV promotes the progression of NAFLD by increasing lipid accumulation in hepatocytes through incomplete autophagy.


Hepatitis B, Chronic , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Hepatitis B virus/genetics , Hepatocytes/metabolism , Hepatitis B, Chronic/genetics , Autophagy , Diet, High-Fat/adverse effects , Liver/metabolism
8.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2545-2553, 2023 10.
Article En | MEDLINE | ID: mdl-37093249

Breast cancer stem cells (BCSCs) have been suggested to contribute to chemotherapeutic resistance and disease relapse in breast cancer. Thus, BCSCs represent a promising target in developing novel breast cancer treatment strategies. Mitochondrial dynamics in BCSCs were recently highlighted as an available approach for targeting BCSCs. In this study, a three-dimensional (3D) cultured breast cancer stem cell spheres model was constructed. Mitochondrial dynamics and functions were analyzed by flow cytometry and confocal microscopy. We have demonstrated that the protein levels of FIS 1 and Mitofusin 1 were significantly increased in BCSCs. Moreover, Capivasertib (AZD5363) administration could suppress Mitofusin1 expression in BCSCs. Our use of MitoTracker Orange and annexin V double-staining assay suggested that AZD5363 could induce apoptosis in BCSCs. The sensitivity of stem cell spheres to doxorubicin was investigated by CCK8 assay, and our results indicated that AZD5363 could re-sensitize BCSCs to Doxo. Flow cytometry analysis identified doxo-induced CD44 and CD133 expression in BCSCs could be suppressed by AZD5363. In combination with AZD536, doxo-induced apoptosis in the BCSCs was significantly increased. In conclusion, our study explored, for the first time, that AZD5363 could target mitochondrial dynamics in 3D cultured stem cell spheres (BCSCs) by regulating Mitofusin.


Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/drug therapy , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , MDA-MB-231 Cells , Mitochondrial Dynamics , Neoplasm Recurrence, Local , Cell Line, Tumor , Cell Proliferation
9.
Naunyn Schmiedebergs Arch Pharmacol ; 396(8): 1847-1856, 2023 08.
Article En | MEDLINE | ID: mdl-36877271

In a previous study, our team found that ASPP2 overexpression increases the sensitivity of liver cancer cells to sorafenib. ASPP2 is an important target in the study of drug therapy for hepatocellular carcinoma. In this study, we demonstrated that ASPP2 altered the response of HepG2 cells to usnic acid (UA) by using mRNA sequencing and CyTOF. CCK8 assay was used to detect cytotoxicity of UA on HepG2 cells. Annexin V-RPE assay, TUNEL assay, and cleaved caspase 3 assay were performed to examine the apoptotic cell death induced by UA. Transcriptomic sequencing and a single-cell mass cytometry were used to analyze the dynamic response of HepG2shcon and HepG2shASPP2 cells to UA treatment. We have demonstrated that UA could inhibit proliferation in HepG2 cells in a concentration-dependent manner. Apoptotic cell death was significantly induced by UA in HepG2 cells, while knocking down ASPP2 could increase the resistance of HepG2 cells to UA. Data from mRNA-Seq indicated that knockout of ASPP2 in HepG2 cells affected cell proliferation, cycle, and metabolism. ASPP2 knockdown resulted in increased stemness and decreased apoptosis of HepG2 cells under the action of UA. CyTOF analysis confirmed the above results, ASPP2 knockdown increased oncoproteins in HepG2 cells and altered response patterns of HepG2 cells to UA. Our data suggested that the natural compound UA could inhibit liver cancer HepG2 cells; meanwhile, ASPP2 knockdown could affect response patterns of HepG2 cells to UA. The above results indicate that ASPP2 could be a research target in the chemoresistance of liver cancer.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Hep G2 Cells , Cell Line, Tumor , Apoptosis , Cell Proliferation , RNA, Messenger/genetics
10.
Pharm Biol ; 60(1): 1876-1883, 2022 Dec.
Article En | MEDLINE | ID: mdl-36200643

CONTEXT: Genistein is a multifunctional natural compound. OBJECTIVE: In this study, we demonstrate the activity of genistein on non-small lung cancer A549 and 95D cells. MATERIALS AND METHODS: A CCK8 assay was used to detect the cytotoxicity of genistein (0, 25, 50, 100, 150, 200 and 250 µM) on A549 and 95D cells for 48 h. AnnexinV-FITC/PI and TUNEL assay were performed to examine the apoptotic cell death induced by genistein (0, 50, 100 and 150 µM, 48 h). Intracellular reactive oxygen species (ROS) generation and mitochondrial membrane potential were measured by flow cytometry. Mitochondrial activity in A549 and 95D cells, treated with 0, 50, 100 and 150 µM genistein for 48 h was detected by MitoTracker Orange staining. Western blot analysis was performed to evaluate the expression of the mitochondrial apoptosis-related proteins. Meanwhile, the expression level of FOXO3a/PUMA signalling was measured by flow cytometry and Western blot assay. RESULTS: IC50 value of genistein against 95D cells and A549 cells was 32.96 ± 2.91 and 110.6 ± 2.41 µM, respectively. The percentage of apoptotic death cells was 20.03%, 29.26% and 27.14% in 95D cells, and 41.62%, 55.24% and 43.45% in A549 cells when treated with 50, 100 and 150 µM genistein, respectively. Our observations also revealed that genistein could elevate intracellular ROS generation, decrease mitochondrial membrane potential, decrease mitochondrial activity (MitoTracker Orange staining), and up-regulate the expression of mitochondrial apoptosis-related proteins. Further examinations revealed that the expression level of FOXO3a and PUMA in NSCLC was significantly increased by genistein. DISCUSSION AND CONCLUSIONS: Our data may provide basic information for further development of genistein as a promising lead compound targeting NSCLC by inducing mitochondrial apoptosis.


Genistein , Lung Neoplasms , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Fluorescein-5-isothiocyanate/metabolism , Genistein/pharmacology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
11.
Front Immunol ; 13: 922000, 2022.
Article En | MEDLINE | ID: mdl-35833148

Background: Increasing evidence supports a critical role of chronic inflammation in intracranial aneurysm (IA). Understanding how the immunological alterations in IA provides opportunities for targeted treatment. However, there is a lack of comprehensive and detailed characterization of the changes in circulating immune cells in IA. Objective: To perform a comprehensive and detailed characterization of the changes in circulating immune cells in patients with IA. Methods: Peripheral blood mononuclear cell samples from IA patients (n = 26) and age-and sex-matched healthy controls (HCs, n = 20) were analyzed using high dimensional mass cytometry, and the frequency and phenotype of immune cell subtypes were assessed. Results: We identified 28 cell clusters and found that the immune signature of IA consists of cluster changes. IA patients exhibited dysfunction of immunity, with dysregulation of CD4+ T-cell clusters, increased B cells and monocytes, and decreased CD8+ T cells, DNT cells, and DPT cells. Moreover, compared with findings in HC, IA was associated with enhanced lymphocyte and monocyte immune activation, with a higher expression of HLA-DR, CXCR3, and CX3CR1. In addition, the expression of TLR4, p-STAT3, and the exhaustion marker PD1 was increased in T cells, B cells, and NK cells in IA patients. Conclusions: Our data provide an overview of the circulating immune cell landscape of IA patients, and reveal that the dysfunction of circulating immunity may play a potential role in the development of IA.


Intracranial Aneurysm , CD8-Positive T-Lymphocytes , Humans , Killer Cells, Natural , Leukocytes, Mononuclear , Lymphocyte Count
12.
Cells ; 10(11)2021 10 22.
Article En | MEDLINE | ID: mdl-34831064

Breast cancer remains a major cause of cancer-related deaths in women worldwide. Chemotherapy-promoted stemness and enhanced stem cell plasticity in breast cancer is a cause for great concern. The discovery of drugs targeting BCSCs was suggested to be an important advancement in the establishment of therapy that improves the efficacy of chemotherapy. In this work, by using single-cell mass cytometry, we observed that stemness in spheroid-forming cells derived from MDA-MB-231 cells was significantly increased after doxorubicin administration and up-regulated integrin αvß3 expression was also observed. An RGD-included nanoparticle (CS-V) was designed, and it was found that it could promote doxorubicin's efficacy against MDA-MB-231 spheroid cells. The above observations suggested that the combination of RGD-included nanoparticles (CS-V) with the chemo-drug doxorubicin could be developed as a potential therapy for breast cancer.


Nanoparticles/chemistry , Proteomics , Single-Cell Analysis , Triple Negative Breast Neoplasms/therapy , Cell Line, Tumor , Chitosan/chemistry , Doxorubicin/administration & dosage , Doxorubicin/therapeutic use , Female , Humans , Integrin alphaVbeta3/metabolism , Nanoparticles/ultrastructure , Neoplastic Stem Cells/pathology , Particle Size , Peptides/chemistry , Spheroids, Cellular/pathology
...