Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 62
1.
MedComm (2020) ; 5(3): e505, 2024 Mar.
Article En | MEDLINE | ID: mdl-38469548

Triple-positive breast cancer (TPBC) poorly responds to current standard neoadjuvant therapy (trastuzumab plus pertuzumab and chemotherapy). Our previous MUKDEN 01 study showed a promising total pathological complete response (tpCR) rate of 30.4% with neoadjuvant pyrotinib (pan-human epidermal growth factor receptor tyrosine kinase inhibitor) plus dalpiciclib (cyclin-dependent kinase 4/6 inhibitor) and letrozole, but the efficacy remains suboptimal. This pilot study (NCT05228951) explored adding trastuzumab to this triplet neoadjuvant regimen in patients with stage II-III TPBC. The primary endpoint was tpCR (ypT0/is, ypN0) rate. Between February 2022 and June 2022, 12 patients were enrolled, and seven (58%; 95% confidence interval [CI], 27.7%-84.8%) patients achieved tpCR. The rate of residual cancer burden (RCB) 0-I was 75% (95% CI, 46.8%-91.1%). The objective response rate (ORR) was 92% (95% CI, 64.6%-98.5%). Mean Ki-67 level was significantly reduced from 45.0% (95% CI, 19.5%-70.5%) at baseline to 17.2% (95% CI, 0.7%-33.7%) after neoadjuvant therapy (p = 0.03). The most common grade 3 adverse events were diarrhea (four [33%]) and decreased neutrophil count (three [25%]). No grade 4 adverse events or treatment-related deaths occurred. This four-drug neoadjuvant regimen shows promising pathological response with an acceptable safety profile in patients with TPBC. A randomized controlled trial (NCT05638594) of this regimen is being conducted.

2.
Inflammopharmacology ; 32(2): 1059-1076, 2024 Apr.
Article En | MEDLINE | ID: mdl-38310155

Pseudomonas aeruginosa is an opportunistic pathogen that commonly causes infections in immunocompromised individuals with significant morbidity and mortality. Quercetin is a natural flavonoid abundantly present in fruits and vegetables, exerting potent anti-inflammatory effects in treatment of various diseases. However, the molecular mechanisms of quercetin in treatment of P. aeruginosa-induced acute lung inflammation are unclear. In this study, we exploited network pharmacology- and molecular docking-based approach to explore the potential mechanisms of quercetin against P. aeruginosa pneumonia, which was further validated via in vivo and in vitro experiments. The in vivo experiments demonstrated that quercetin alleviated the P. aeruginosa-induced lung injury by diminishing neutrophil infiltration and production of proinflammatory cytokines (IL-1ß, IL-6, and TNF), which was associated with decreased mortality. Moreover, the quercetin-treated mice displayed decreased phosphorylation levels of PI3K, AKT, IκBα, and NF-κB p65 in lung tissues compared to non-drug-treated mice. Similarly, the in vitro study showed that the phosphorylation of these regulatory proteins and production of the proinflammatory cytokines were impaired in the quercetin-pretreated macrophages upon P. aeruginosa infection. Altogether, this study suggested that quercetin reduced the P. aeruginosa-induced acute lung inflammation by suppressing PI3K/AKT/NF-κB signaling pathway.


NF-kappa B , Pneumonia , Quercetin , Animals , Mice , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pneumonia/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Pseudomonas aeruginosa/metabolism , Quercetin/pharmacology , Signal Transduction
3.
Anal Chim Acta ; 1287: 342033, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38182334

The abuse of antibiotics has become a global public safety issue, leading to the development of antimicrobial resistance (AMR). The development of antimicrobial susceptibility testing (AST) is crucial in reducing the growth of AMR. However, traditional AST methods are time-consuming (e.g., 24-72 h), labor-intensive, and costly. Here, we propose a controlled-diffusion centrifugal microfluidic platform (CCM) for rapid AST to obtain highly precise minimum inhibitory concentration (MIC) values. Antibiotic concentration gradients are generated by controlled moving and diffusing of antibiotic and buffer solution along the main microchannel within 3 min. The solution and bacterial suspension are then injected into the outermost reaction chamber by simple centrifugation. The CCM successfully determined the MIC for three commonly used antibiotics in clinical settings within 4-9 h. To further enhance practicality, reduce costs, and meet point-of-care testing demands, we have developed an integrated mobile detection platform for automated MIC value acquisition. The proposed CCM is a simple, low-cost, and portable method for rapid AST with broad clinical and in vitro applications.


Anti-Bacterial Agents , Microfluidics , Anti-Bacterial Agents/pharmacology , Centrifugation , Diffusion , Microbial Sensitivity Tests
4.
PLoS One ; 18(12): e0296213, 2023.
Article En | MEDLINE | ID: mdl-38134039

Dabieshan tick virus (DBTV) is a newly identified arbovirus, first detected in Haemaphysalis longicornis collected from Hubei Province in 2015. It has been confirmed that DBTV is widely distributed in Shandong Province, China. However, its entomological and epidemiological features remain to be further explored, particularly the feasibility of transovarial transmission. Our research tries to explain the possibility of transovarial transmission of DBTV from engorged female ticks to their offspring. All engorged female adult ticks were sampled from domestic sheep and allowed to lay eggs and hatch in appropriate laboratory conditions. All engorged ticks, larvae and unhatched eggs were classified into pools for nucleic acid extraction and DBTV RNA detection. According to the results of qRT-PCR, the positive rate of DBTV was 6.25% (8/128) in engorged female ticks, 3.57% (1/28) in eggs and 5% (3/60) in larvae pools, respectively. Phylogenetic analysis indicated that DBTV isolates from larvae were similar to those from maternal ticks with more than 99.5% homology, and DBTV was relatively conservative in evolution. Our findings are the first to provide molecular evidence of potential transovarial transmission of DBTV among H. longicornis. Nonetheless, the transovarial transmission of DBTV in frequency and proportion occurring in nature deserves further investigation.


Ixodidae , Ticks , Animals , Sheep , Female , Haemaphysalis longicornis , Phylogeny , RNA, Viral/genetics , China/epidemiology
5.
Redox Biol ; 68: 102944, 2023 Dec.
Article En | MEDLINE | ID: mdl-37890359

AIMS: Endothelial dysfunction plays a pivotal role in atherosclerosis, but the detailed mechanism remains incomplete understood. Nogo-B is an endoplasmic reticulum (ER)-localized protein mediating ER-mitochondrial morphology. We previously showed endothelial Nogo-B as a key regulator of endothelial function in the setting of hypertension. Here, we aim to further assess the role of Nogo-B in coronary atherosclerosis in ApoE-/- mice with pressure overload. METHODS AND RESULTS: We generated double knockout (DKO) mouse models of systemically or endothelium-specifically excising Nogo-A/B gene on an ApoE-/- background. After 7 weeks of transverse aortic constriction (TAC) surgery, compared to ApoE-/- mice DKO mice were resistant to the development of coronary atherosclerotic lesions and plaque rapture. Sustained elevation of Nogo-B and adhesion molecules (VCAM-1/ICAM-1), early markers of atherosclerosis, was identified in heart tissues and endothelial cells (ECs) isolated from TAC ApoE-/- mice, changes that were significantly repressed by Nogo-B deficiency. In cultured human umbilical vein endothelial cells (HUVECs) exposure to inflammatory cytokines (TNF-α, IL-1ß), Nogo-B was upregulated and activated reactive oxide species (ROS)-p38-p65 signaling axis. Mitofusin 2 (Mfn2) is a key protein tethering ER to mitochondria in ECs, and we showed that Nogo-B expression positively correlated with Mfn2 protein level. And Nogo-B deletion in ECs or in ApoE-/- mice reduced Mfn2 protein content and increased ER-mitochondria distance, reduced ER-mitochondrial Ca2+ transport and mitochondrial ROS generation, and prevented VCAM-1/ICAM-1 upregulation and EC dysfunction, eventually restrained atherosclerotic lesions development. CONCLUSION: Our study revealed that Nogo-B is a critical modulator in promoting endothelial dysfunction and consequent pathogenesis of coronary atherosclerosis in pressure overloaded hearts of ApoE-/- mice. Nogo-B may hold the promise to be a common therapeutic target in the setting of hypertension.


Atherosclerosis , Coronary Artery Disease , Hypertension , Plaque, Atherosclerotic , Humans , Animals , Mice , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Reactive Oxygen Species/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Nogo Proteins/genetics , Nogo Proteins/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Plaque, Atherosclerotic/metabolism , Oxidative Stress , Human Umbilical Vein Endothelial Cells/metabolism , Inflammation/metabolism , Endothelium/metabolism , Hypertension/metabolism , Apolipoproteins E/genetics , Mice, Knockout , Mice, Inbred C57BL
6.
JAMA Oncol ; 9(8): 1099-1107, 2023 08 01.
Article En | MEDLINE | ID: mdl-37261804

Importance: Acral melanoma, known for low tumor mutation burden, responds poorly to immunotherapy. A standard therapy is still lacking. Objective: To investigate the activity and safety of camrelizumab (an anti-programmed cell death-1 antibody) plus apatinib (a vascular endothelial growth factor receptor 2 inhibitor) and temozolomide as first-line treatment in patients with advanced acral melanoma. Design, Setting, and Participants: In this single-arm, single-center, phase 2 nonrandomized clinical trial, patients with treatment-naive unresectable stage III or IV acral melanoma were enrolled at Peking University Cancer Hospital and Institute between June 4, 2020, and August 24, 2021. The data cutoff date was April 10, 2022. Interventions: Patients received 4-week cycles of intravenous camrelizumab, 200 mg, every 2 weeks; oral apatinib 250 mg, once daily; and intravenous temozolomide, 200 mg/m2, once daily on days 1 to 5 until disease progression or unacceptable toxic effects. Main Outcomes and Measures: The primary end point was objective response rate as assessed by investigators according to the Response Evaluation Criteria In Solid Tumors (version 1.1). Secondary end points included progression-free survival, time to response, duration of response, disease control rate, overall survival, and safety. Results: A total of 50 patients (32 men [64%]; median age, 57 years [IQR, 52-62 years]) were enrolled and received treatment. The median follow-up duration was 13.4 months (IQR, 9.6-16.2 months). The objective response rate was 64.0% (32 of 50; 95% CI, 49.2%-77.1%). The median time to response and duration of response were 2.7 months (IQR, 0.9-2.9 months) and 17.5 months (95% CI, 12.0 to not reached), respectively. The disease control rate was 88.0% (44 of 50; 95% CI, 75.7%-95.5%). The estimated median progression-free survival was 18.4 months (95% CI, 10.6 to not reached). The median overall survival was not reached. The most common grade 3 or 4 treatment-related adverse events were increased gamma-glutamyltransferase levels (15 [30%]), decreased neutrophil count (11 [22%]), increased conjugated bilirubin levels (10 [20%]), and increased aspartate aminotransferase levels (10 [20%]). No treatment-related deaths occurred. Conclusions and Relevance: The findings of this nonrandomized clinical trial suggest that camrelizumab plus apatinib and temozolomide may be a potential first-line treatment option for patients with advanced acral melanoma, which warrants further validation in a randomized clinical trial. Trial Registration: ClinicalTrials.gov Identifier: NCT04397770.


Melanoma , Vascular Endothelial Growth Factor A , Male , Humans , Middle Aged , Temozolomide/therapeutic use , Melanoma/pathology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Melanoma, Cutaneous Malignant
7.
Carcinogenesis ; 44(6): 463-475, 2023 08 18.
Article En | MEDLINE | ID: mdl-37158456

Circular RNAs (circRNAs) have been accepted to play key roles in the development and progression of mutiple cancers including colorectal cancer (CRC). Here, we identified circ-METTL9, derived from 2 to 4 exons of METTL9 gene, may promote CRC progression by accelerating cell cycle progression. However, the role and mechanism of circ-METTL9 in CRC remains unclear. Based on our data, the expression of circ-METTL9 was significantly upregulated in CRC tissues and markedly increased in advanced tumors in CRC patients. Functional experiments demonstrated that circ-METTL9 overexpression promoted CRC cells proliferation and migration in vitro, and simultaneously enhanced CRC tumor growth and metastasis in vivo. Mechanistically, RNA immunoprecipitation (RIP) assays proved that circ-METTL9 might be a miRNA sponge, and RNA pulldown assays showed the interaction between circ-METTL9 and miR-551b-5p. Notably, cyclin-dependent kinase 6 (CDK6), a key regulator in cell cycle, is a conserved downstream target of miR-551b-5p. Taken together, our findings highlight a novel oncogenic function of circ-METTL9 in CRC progression via circ-METTL9/miR-551b-5p/CDK6 axis, which may serve as a prognostic biomarker and therapeutic target for CRC patients.


Colorectal Neoplasms , MicroRNAs , Humans , Cell Line, Tumor , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , Cyclin-Dependent Kinase 6/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Methyltransferases/metabolism
8.
Microb Cell Fact ; 22(1): 100, 2023 May 17.
Article En | MEDLINE | ID: mdl-37198642

BACKGROUND: Human epidermal growth factor receptor 2 (HER2) positive breast cancer is an aggressive subtype, accounting for around 20% of all breast cancers. The development of HER2-targeted therapy has substantially improved patient outcomes. Nevertheless, the increasing rate of side effects and resistance to targeted drugs limit their efficacy in clinical practice. In this study, we designed and synthesized a new immunotoxin, 4D5Fv-PE25, which targets HER2-positive breast cancer, and evaluated its effectiveness in vitro and in vivo. RESULTS: The 4D5Fv-PE25 was expressed in high-density Escherichia coli (E. coli.) using the fermentor method and refined via hydrophobicity, ion exchange, and filtration chromatography, achieving a 56.06% recovery rate. Additionally, the semi-manufactured product with 96% purity was prepared into freeze-dried powder by the lyophilized process. Flow cytometry was used to detect the expression of HER2 in SK-BR-3, BT-474, MDA-MB-231, and MDA-MB-468 breast cancer cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method was used for cytotoxicity assay, and the half-maximal inhibitory concentration (IC50) of 4D5Fv-PE25 lyophilized products to HER2-positive cell line SK-BR-3 was 12.53 ng/mL. The 4D5Fv-PE25 was injected into xenograft tumor mice via the tail vein on the 1st, 4th, and 8th day, it indicated that the growth of tumor volume was effectively inhibited for 24 days, although the 4D5Fv-PE25 was metabolized within 60 min by measuring the release of 3 H-Thymidine radiation. CONCLUSION: we succeeded in producing the 4D5Fv-PE25 freeze-dried powder using the prokaryotic expression method, and it could be employed as a potential drug for treating HER2-positive breast cancer.


Breast Neoplasms , Immunotoxins , Animals , Female , Humans , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Escherichia coli/metabolism , Immunotoxins/pharmacology , Powders/therapeutic use , Receptor, ErbB-2/genetics
9.
Heliyon ; 9(4): e14823, 2023 Apr.
Article En | MEDLINE | ID: mdl-37025887

Type 2 diabetes mellitus (T2DM) is characterized by chronic low-grade systemic inflammation. Tissue infiltration by monocyte migration contributes to the pathogenesis of vascular complications in T2DM. We studied the role of intermediate-conductance Ca2+-activated K+ (KCa3.1) channels in the palmitic acid (PA)-induced migration of peripheral blood mononuclear cells (PBMCs) from T2DM patients and the influence of advanced glycation endproducts (AGEs). A total of 49 T2DM patients and 33 healthy subjects was recruited into this study. Using flow cytometry and Western blotting analysis as well as cell migration assay, we found that there was a significant decrease in frequency of T lymphocytes and monocytes in CD45+ leukocyte population. PA at 100 µM stimulated migration of PBMCs from T2DM individuals, which was inhibited by the specific KCa3.1 channel blocker TRAM-34 (1 µM). The PBMC migration was positively correlated with glycosylated hemoglobin A1 chain (HbA1c) level of T2DM patients, an indicator of AGEs, and PBMCs with higher level of HbA1c showed upregulated expression of toll-like receptor (TLR) 2/4 and KCa3.1 channels. In THP-1 cells, AGEs at 200 µg/ml increased protein expression of TLR 2/4 and KCa3.1 channels, and were synergistically involved in PA-induced migration through receptors of AGEs (RAGE)-mediated KCa3.1 upregulation. In conclusion, in PBMCs of T2DM patients, AGEs promotes PA-induced migration via upregulation of TLR2/4 and KCa3.1 channels.

10.
Cancer Med ; 12(8): 9774-9787, 2023 04.
Article En | MEDLINE | ID: mdl-36855796

BACKGROUND: Chromosomal heterogeneity leads to the abnormal expression and mutation of tumor-specific genes. Drugs targeting oncogenes have been extensively developed. However, given the random mutation of tumor suppressor genes, the development of its targeted drugs is difficult. METHODS: Our early research revealed that artificial circular single-stranded DNA (CSSD) can restore multiple tumor suppressor genes to inhibit tumor malignant progression by adsorbing miRNA. Here, we improved CSSD to a fully closed single-stranded DNA with G quadruplex DNA secondary structure (G4-CSSD), which made G4-CSSD with higher acquisition rate and decreased degradation. The Cancer Genome Atlas (TCGA) and Human Protein Atlas database were used to predict tumour suppressor genes in colon cancer. Cellular and animal experiments were performed to validate the role of G4-CSSD in cancer cell progression. RESULTS: In colon cancer, we observed the simultaneous low expressions of chloride channel accessory 1 (CLCA1), UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 6 (B3GNT6) and UDP glucuronosyltransferase family 2 member A3 (UGT2A3), which indicated an favourable prognosis. After repressing miR-590-3p with G4-CSSD590, the upregulation of CLCA1, B3GNT6 and UGT2A3 inhibited the proliferation and metastasis of colon cancer cells. CONCLUSIONS: This study may provide basis for new treatment methods for colon cancer by restoration of tumor suppressor genes.


Colonic Neoplasms , G-Quadruplexes , MicroRNAs , Humans , MicroRNAs/genetics , DNA, Single-Stranded/genetics , Adsorption , Colonic Neoplasms/genetics , Colonic Neoplasms/therapy , DNA , Gene Expression Regulation, Neoplastic
11.
Immunobiology ; 228(3): 152377, 2023 05.
Article En | MEDLINE | ID: mdl-36933529

Pseudomonas aeruginosa represents one of the major opportunistic pathogens, which causes nosocomial infections in immunocompromised individuals. The molecular mechanisms controlling the host immune response to P. aeruginosa infections are not completely understood. In our previous study, early growth response 1 (Egr-1) and regulator of calcineurin 1 (RCAN1) were found to positively and negatively regulate the inflammatory responses, respectively, during P. aeruginosa pulmonary infection, and both of them had an impact on activating NF-κB pathway. Herein, we examined the inflammatory responses of Egr-1/RCAN1 double knockout mice using a mouse model of P. aeruginosa acute pneumonia. As a result, the Egr-1/RCAN1 double knockout mice showed reduced production of proinflammatory cytokines (IL-1ß, IL-6, TNF and MIP-2), diminished inflammatory cell infiltration and decreased mortality, which were similar to those of Egr-1-deficienct mice but different from those of RCAN1-deficient mice. In vitro studies demonstrated that Egr-1 mRNA transcription preceded RCAN1 isoform 4 (RCAN1.4) mRNA transcription in macrophages, and the macrophages with Egr-1 deficiency exhibited decreased RCAN1.4 mRNA levels upon P. aeruginosa LPS stimulation. Moreover, Egr-1/RCAN1 double-deficient macrophages had reduced NF-κB activation compared to RCAN1-deficient macrophages. Taken together, Egr-1 predominates over RCAN1 in regulating inflammation during P. aeruginosa acute lung infection, which influences RCAN1.4 gene expression.


Pneumonia , Pseudomonas aeruginosa , Animals , Mice , Inflammation , Lung/metabolism , Mice, Knockout , NF-kappa B/metabolism , RNA, Messenger , Transcription Factors
12.
Anal Chem ; 95(14): 6145-6155, 2023 04 11.
Article En | MEDLINE | ID: mdl-36996249

Low-cost, rapid, and accurate acquisition of minimum inhibitory concentrations (MICs) is key to limiting the development of antimicrobial resistance (AMR). Until now, conventional antibiotic susceptibility testing (AST) methods are typically time-consuming, high-cost, and labor-intensive, making them difficult to accomplish this task. Herein, an electricity-free, portable, and robust handyfuge microfluidic chip was developed for on-site AST, termed handyfuge-AST. With simply handheld centrifugation, the bacterial-antibiotic mixtures with accurate antibiotic concentration gradients could be generated in less than 5 min. The accurate MIC values of single antibiotics (including ampicillin, kanamycin, and chloramphenicol) or their combinations against Escherichia coli could be obtained within 5 h. To further meet the growing demands of point-of-care testing, we upgraded our handyfuge-AST with a pH-based colorimetric strategy, enabling naked eye recognition or intelligent recognition with a homemade mobile app. Through a comparative study of 60 clinical data (10 clinical samples corresponding to six commonly used antibiotics), the accurate MICs by handyfuge-AST with 100% categorical agreements were achieved compared to clinical standard methods (area under curves, AUCs = 1.00). The handyfuge-AST could be used as a low-cost, portable, and robust point-of-care device to rapidly obtain accurate MIC values, which significantly limit the progress of AMR.


Anti-Bacterial Agents , Microfluidics , Microfluidics/methods , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Escherichia coli , Ampicillin
13.
Arterioscler Thromb Vasc Biol ; 43(5): 726-738, 2023 05.
Article En | MEDLINE | ID: mdl-36951065

BACKGROUND: S1P (sphingosine-1-phosphate) has been reported to possess vasodilatory properties, but the underlying pathways are largely unknown. METHODS: Isolated mouse mesenteric artery and endothelial cell models were used to determine S1P-induced vasodilation, intracellular calcium, membrane potentials, and calcium-activated potassium channels (KCa2.3 and KCa3.1 [endothelial small- and intermediate-conductance calcium-activated potassium channels]). Effect of deletion of endothelial S1PR1 (type 1 S1P receptor) on vasodilation and blood pressure was evaluated. RESULTS: Mesenteric arteries subjected to acute S1P stimulation displayed a dose-dependent vasodilation response, which was attenuated by blocking endothelial KCa2.3 or KCa3.1 channels. In cultured human umbilical vein endothelial cells, S1P stimulated immediate membrane potential hyperpolarization following activation of KCa2.3/KCa3.1 with elevated cytosolic Ca2+. Further, chronic S1P stimulation enhanced expression of KCa2.3 and KCa3.1 in human umbilical vein endothelial cells in dose- and time-dependent manners, which was abolished by disrupting either S1PR1-Ca2+ signaling or downstream Ca2+-activated calcineurin/NFAT (nuclear factor of activated T-cells) signaling. By combination of bioinformatics-based binding site prediction and chromatin immunoprecipitation assay, we revealed in human umbilical vein endothelial cells that chronic activation of S1P/S1PR1 promoted NFATc2 nuclear translocation and binding to promoter regions of KCa2.3 and KCa3.1 genes thus to upregulate transcription of these channels. Deletion of endothelial S1PR1 reduced expression of KCa2.3 and KCa3.1 in mesenteric arteries and exacerbated hypertension in mice with angiotensin II infusion. CONCLUSIONS: This study provides evidence for the mechanistic role of KCa2.3/KCa3.1-activated endothelium-dependent hyperpolarization in vasodilation and blood pressure homeostasis in response to S1P. This mechanistic demonstration would facilitate the development of new therapies for cardiovascular diseases associated with hypertension.


Hypertension , Vasodilation , Mice , Humans , Animals , Blood Pressure , Endothelium/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Homeostasis , Small-Conductance Calcium-Activated Potassium Channels/genetics , Small-Conductance Calcium-Activated Potassium Channels/metabolism
14.
Talanta ; 258: 124466, 2023 Jun 01.
Article En | MEDLINE | ID: mdl-36963148

This paper proposed a hand-powered centrifugal micropipette-tip strategy, termed HCM, for all-in-one immunoassay combined with a distance-based readout for portable quantitative detection of SARS-CoV-2. The target SARS-CoV-2 virus antigen triggers the binding of multiple monoclonal antibody-coated red latex nanobeads, forming larger complexes. Following incubation and centrifugation, the formed aggregated complexes settle at the bottom of the tip, while free red nanobeads remain suspended in the solution. The HCM enables sensitive (1 ng/mL) and reliable quantification of SARS-CoV-2 within 25 min. With the advantages of free washing, free fabrication, free instrument, and without the optical device, the proposed low-cost and easy-to-use HCM immunoassay shows great potential for quantitative POC diagnostics for SARS-CoV-2.


COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Immunoassay
15.
Materials (Basel) ; 16(5)2023 Feb 22.
Article En | MEDLINE | ID: mdl-36902921

The friction spot welding (FSpW) method was used to weld 2198-T8 Al-Li alloy at rotational speeds of 500 rpm, 1000 rpm, and 1800 rpm. It was shown that the grains in the FSpW joints were transformed from "pancake" grains to fine equiaxed grains by the heat input of welding, and the reinforcing phases of S' and θ were all redissolved into the Al matrix. This leads to a decrease in the tensile strength of the FsPW joint compared to the base material and a change in the fracture mechanism from mixed ductile-brittle fracture to ductile fracture. Finally, the tensile properties of the welded joint depend on the size and morphology of the grains and their dislocation density. At the rotational speed setting of 1000 rpm in this paper, the mechanical properties of welded joints consisting of fine and uniformly distributed equiaxed grains are best. Therefore, a reasonable set of the rotational speed of FSpW can improve the mechanical properties of the welded joints of 2198-T8 Al-Li alloy.

16.
Theranostics ; 13(2): 560-577, 2023.
Article En | MEDLINE | ID: mdl-36632235

Rationale: Chemotherapy is a common clinical strategy for cancer treatment. However, the accompanied cardiomyopathy renders cancer patients under risk of another life-threatening condition. Whereas Hippo pathway is known to play key roles in both cancerogenesis and heart disease, it remains unclear whether Hippo pathway activation mediates chemotherapy-induced cardiomyopathy. Methods and Results: In human breast cancer cells, doxorubicin (DOX) significantly induced upregulation of Hippo kinase Mst1, inhibitory phosphorylation of YAP, mitochondrial damage, reduced cell viability and increased apoptosis. Hippo pathway inactivation by Mst1-siRNA transfection effectively improved cell survival and mitigated mitochondrial damage and cell apoptosis. Another anti-cancer drug YAP inhibitor verteporfin also induced lower cancer cell viability, apoptosis and mitochondrial injury. Chronic treatment with DOX in vivo (4 mg/kg/week for 6 weeks) caused mitochondrial damage and dysfunction, oxidative stress and cardiac fibrosis, while acute DOX treatment (16 mg/kg single bolus) also induced myocardial oxidative stress and mitochondrial abnormalities. Chronic treatment with verteporfin (2 months) resulted in cardiomyopathy phenotypes comparable to that by chronic DOX regimen. In transgenic mice with cardiac overexpression of kinase-dead mutant Mst1 gene, these adverse cardiac effects of DOX were significantly attenuated relative to wild-type littermates. Conclusions: Anti-cancer action of both DOX and verteporfin is associated with Hippo pathway activation. Such action on cardiac Hippo pathway mediates mitochondrial damage and cardiomyopathy.


Antineoplastic Agents , Cardiomyopathies , Hippo Signaling Pathway , Neoplasms , Animals , Humans , Mice , Apoptosis , Cardiomyopathies/chemically induced , Cardiotoxicity/etiology , Doxorubicin/pharmacology , Hippo Signaling Pathway/drug effects , Mice, Transgenic , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Neoplasms/drug therapy , Oxidative Stress , Verteporfin/pharmacology , Verteporfin/therapeutic use , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use
17.
Cell Mol Life Sci ; 80(2): 38, 2023 Jan 11.
Article En | MEDLINE | ID: mdl-36629913

BACKGROUND: Vascular endothelial dysfunction is regarded as an early event of hypertension. Galectin-3 (Gal-3) is known to participate in various pathological processes. Whilst previous studies showed that inhibition of Gal-3 effectively ameliorates angiotensin II (Ang II)-induced atherosclerosis or hypertension, it remains unclear whether Ang II regulates Gal-3 expression and actions in vascular endothelium. METHODS: Using techniques of molecular biology and myograph, we investigated Ang II-mediated changes in Gal-3 expression and activity in thoracic aortas and mesenteric arteries from wild-type and Gal-3 gene deleted (Gal-3-/-) mice and cultured endothelial cells. RESULTS: The serum level of Gal-3 was significantly higher in hypertensive patients or in mice with chronic Ang II-infusion. Ang II infusion to wild-type mice enhanced Gal-3 expression in the aortic and mesenteric arteries, elevated systolic blood pressure and impaired endothelium-dependent relaxation of the thoracic aortas and mesenteric arteries, changes that were abolished in Gal-3-/- mice. In human umbilical vein endothelial cells, Ang II significantly upregulated Gal-3 expression by promoting nuclear localization of Yes-associated protein (YAP) and its interaction with transcription factor Tead1 with enhanced YAP/Tead1 binding to Gal-3 gene promoter region. Furthermore, Gal-3 deletion augmented the bioavailability of nitric oxide, suppressed oxidative stress, and alleviated inflammation in the thoracic aorta of Ang II-infused mice or endothelial cells exposed to Ang II. CONCLUSIONS: Our results demonstrate for the first time that Ang II upregulates Gal-3 expression via increment in YAP nuclear localization in vascular endothelium, and that Gal-3 mediates endothelial dysfunction contributing to the development of hypertension.


Angiotensin II , Hypertension , Mice , Humans , Animals , Angiotensin II/pharmacology , Angiotensin II/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Hypertension/metabolism , Signal Transduction , Human Umbilical Vein Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Blood Pressure
19.
iScience ; 25(9): 105007, 2022 Sep 16.
Article En | MEDLINE | ID: mdl-36097615

Jingmen tick virus (JMTV) is a novel tick-borne segmented RNA virus that is closely related to un-segmental RNA virus in evolution. It has been confirmed that JMTV could be a causative agent of human disease. In this study, a total of 3658 ticks were sampled from 7 provinces of China and then divided into 545 pools according to the location and species. QRT-PCR and nested PCR were performed to confirm the presence of JMTV. The results showed JMTV was identified in 5 out of 7 provinces with an average infection rate of 1.4% (51/3658). Phylogenetic analysis indicated that all JMTV strains identified in this study were closely related to each other and formed a well-supported sub-lineage. Our results provide molecular evidence of JMTV in different species of ticks from endemic and non-endemic regions and demonstrate that JMTV, as a natural foci pathogen, may be widely distributed all over China.

20.
Parasit Vectors ; 15(1): 339, 2022 Sep 27.
Article En | MEDLINE | ID: mdl-36167570

BACKGROUND: Jingmen tick virus (JMTV) is a newly discovered tick-borne virus that can cause disease in humans. This virus has been authenticated as being extremely widespread worldwide and as posing a significant threat to public health and safety. METHODS: We collected 35 ticks belonging to two tick species from wild boars in Nanping, Fujian Province, China. JMTV-specific genes were amplified by qRT-PCR and nested PCR to confirm the presence of this pathogen. RESULTS: More than one third of of all ticks collected (11/35) were positive for JMTV. Viral sequences were obtained from three of the JMTV-positive ticks, including the complete genomic sequence from one tick. This was the first time that JMTV was identified in the hard-bodied tick Amblyomma testudinarium. Phylogenetic analysis revealed that JMTV from Fujian Province shared > 90% identity with other isolates derived from China, but was distinct from those reported in France and Cambodia. CONCLUSIONS: JMTV is characterized by relatively low mutations and has its own local adaptive characteristics in different regions. Our findings provide molecular evidence of the presence of JMTV in an overlooked tick species from an area not unrecognized as being endemic. They also suggest that JMTV occupies a wider geographical distribution than currently believed and is a potential disease vector.


Ixodidae , Ticks , Viruses , Amblyomma , Animals , China/epidemiology , Humans , Phylogeny
...