Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 5(17): 4402-4414, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37638158

RESUMEN

Nanodiamonds (NDs) are versatile, broadly available nanomaterials with a set of features highly attractive for applications from biology over energy harvesting to quantum technologies. Via synthesis and surface chemistry, NDs can be tuned from the sub-micron to the single-digit size, from conductive to insulating, from hydrophobic to hydrophilic, and from positively to negatively charged surface by simple annealing processes. Such ND diversity makes it difficult to understand and take advantage of their electronic properties. Here we present a systematic correlated study of structural and electronic properties of NDs with different origins and surface terminations. The absolute energy level diagrams are obtained by the combination of optical (UV-vis) and photoelectron (UPS) spectroscopies, Kelvin probe measurements, and energy-resolved electrochemical impedance spectroscopy (ER-EIS). The energy levels and density of states in the bandgap of NDs are correlated with the surface chemistry and structure characterized by FTIR and Raman spectroscopy. We show profound differences in energy band shifts (by up to 3 eV), Fermi level position (from p-type to n-type), electron affinity (from +0.5 eV to -2.2 eV), optical band gap (5.2 eV to 5.5 eV), band gap states (tail or mid-gap), and electrical conductivity depending on the high-pressure, high-temperature and detonation origin of NDs as well as on the effects of NDs' oxidation, hydrogenation, sp2/sp3 carbon phases and surface adsorbates. These data are fundamental for understanding and designing NDs' optoelectrochemical functional mechanisms in diverse application areas.

2.
ACS Appl Mater Interfaces ; 15(15): 19646-19652, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37022802

RESUMEN

This work suggests new morphology for the AlGaN/GaN interface which enhances electron mobility in two-dimensional electron gas (2DEG) of high-electron mobility transistor (HEMT) structures. The widely used technology for the preparation of GaN channels in AlGaN/GaN HEMT transistors is growth at a high temperature of around 1000 °C in an H2 atmosphere. The main reason for these conditions is the aim to prepare an atomically flat epitaxial surface for the AlGaN/GaN interface and to achieve a layer with the lowest possible carbon concentration. In this work, we show that a smooth AlGaN/GaN interface is not necessary for high electron mobility in 2DEG. Surprisingly, when the high-temperature GaN channel layer is replaced by the layer grown at a temperature of 870 °C in an N2 atmosphere using TEGa as a precursor, the electron Hall mobility increases significantly. This unexpected behavior can be explained by a spatial separation of electrons by V-pits from the regions surrounding dislocation which contain increased concentration of point defects and impurities.

3.
Materials (Basel) ; 15(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36234257

RESUMEN

A set of GaN layers prepared by metalorganic vapor phase epitaxy under different technological conditions (growth temperature carrier gas type and Ga precursor) were investigated using variable energy positron annihilation spectroscopy (VEPAS) to find a link between technological conditions, GaN layer properties, and the concentration of gallium vacancies (VGa). Different correlations between technological parameters and VGa concentration were observed for layers grown from triethyl gallium (TEGa) and trimethyl gallium (TMGa) precursors. In case of TEGa, the formation of VGa was significantly influenced by the type of reactor atmosphere (N2 or H2), while no similar behaviour was observed for growth from TMGa. VGa formation was suppressed with increasing temperature for growth from TEGa. On the contrary, enhancement of VGa concentration was observed for growth from TMGa, with cluster formation for the highest temperature of 1100 °C. From the correlation of photoluminescence results with VGa concentration determined by VEPAS, it can be concluded that yellow band luminescence in GaN is likely not connected with VGa; additionally, increased VGa concentration enhances excitonic luminescence. The probable explanation is that VGa prevent the formation of some other highly efficient nonradiative defects. Possible types of such defects are suggested.

4.
ACS Appl Mater Interfaces ; 9(44): 38842-38853, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29028298

RESUMEN

Color centers in diamonds have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report chemical vapor deposition (CVD) growth of nanocrystalline diamond (NCD) films as thin as 5-6 nm with photoluminescence (PL) from silicon-vacancy (SiV) centers at 739 nm. Instead of conventional 4-6 nm detonation nanodiamonds (DNDs), we prepared and employed hydrogenated 2 nm DNDs (zeta potential = +36 mV) to form extremely dense (∼1.3 × 1013 cm-2), thin (2 ± 1 nm), and smooth (RMS roughness < 0.8 nm) nucleation layers on an Si/SiOx substrate, which enabled the CVD growth of such ultrathin NCD films in two different and complementary microwave (MW) CVD systems: (i) focused MW plasma with an ellipsoidal cavity resonator and (ii) pulsed MW plasma with a linear antenna arrangement. Analytical ultracentrifuge, infrared and Raman spectroscopies, atomic force microscopy, and scanning electron microscopy are used for detailed characterization of the 2 nm H-DNDs and the nucleation layer as well as the ultrathin NCD films. We also demonstrate on/off switching of the SiV center PL in the NCD films thinner than 10 nm, which is achieved by changing their surface chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...