Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Heliyon ; 10(17): e36275, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296022

RESUMEN

Cells have evolved various DNA repair mechanisms to prevent DNA damage from building up. Malfunctions during DNA repair can influence cellular homeostasis because they can bring on genomic instability through the improper recognition of DNA damage or dysregulation of the repair process. Maintaining proper DNA repair is also essential for stem cells (SCs), as they provide a differentiated cell population to the living organism. SCs are regularly used in personalized stem cell therapy. Patients must be treated with specific activators to produce these SCs effectively. This report investigated the impact of treating mesenchymal stem cells (MSC) with lipopolysaccharide, tumor necrosis factor, interferon-gamma, polyinosinic acid, interleukin 1 beta, while monitoring their transcription-related response using next-generation sequencing. RNA sequencing revealed robust gene expression changes, including those of specific genes encoding proteins implicated in DNA damage response. Stem cells can effectively repair specific DNA damages; moreover, they fail to undergo senescence or cell death when genetic lesions accumulate. Here, we draw attention to an elevated DNA repair activation following MSC induction, which may be the main reason for the ineffective stem cell transplantation and may also contribute to the genetic drift that can initiate tumor formation.

2.
Sci Rep ; 14(1): 20151, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215008

RESUMEN

The imperative need for sensitive and precise tools is underscored in cancer diagnostics, with biomarkers playing a pivotal role in facilitating early detection and tumor diagnosis. Despite their classical pathological classification, testicular tumors lack valuable markers, emphasizing the necessity to identify and apply serum tumor markers in clinical management. Unfortunately, existing biomarkers exhibit limited sensitivities and specificities. Recent years have witnessed the discovery of novel RNA molecules, presenting a potential breakthrough as diagnostic tools and promising biomarkers. This report presents compelling evidence supporting the detection of early testicular cancer by applying a set of nine microRNAs (miRNAs), establishing them as valuable serum biomarkers for diagnosis. We developed a standardized serum-based measurement protocol and conducted comprehensive statistical analyses on the dataset to underscore the diagnostic accuracy of the miRNA pool. Notably, with a sensitivity exceeding 93%, miR-21, miR-29a, and miR-106b surpass classical serum tumor markers in the context of testicular cancer. Specifically, these miRNAs are poised to enhance clinical decision-making in testicular cancer detection and hold the potential for assessing tumor growth in monitoring chemotherapy outcomes.


Asunto(s)
Biomarcadores de Tumor , MicroARNs , Neoplasias Testiculares , Masculino , MicroARNs/sangre , MicroARNs/genética , Neoplasias Testiculares/sangre , Neoplasias Testiculares/diagnóstico , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología , Humanos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Adulto , Persona de Mediana Edad , Metástasis de la Neoplasia , Regulación Neoplásica de la Expresión Génica
3.
Front Oncol ; 14: 1428182, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015503

RESUMEN

Introduction: While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Methods: Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Results: Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Discussion: Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making.

5.
Int J Gynecol Pathol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920137

RESUMEN

Cervical intraepithelial neoplasia (CIN) represents a spectrum of preinvasive squamous lesions within the cervical epithelium, whose identification is a diagnostic challenge due to subtle histomorphological differences among its categories. This study explores ORF1p, a nucleic acid-binding protein derived from long interspersed nuclear element-1 (LINE-1), as a potential biomarker for enhancing CIN diagnosis. A comprehensive analysis of 143 cervical specimens, encompassing CIN I (n=20), CIN II (n=46), CIN III (n=14), invasive cancer (n=32), and nondysplastic cases (normal cervical epithelia (n=24) and atrophy (n=7) were conducted. ORF1p, Ki67, and p16 expressions were evaluated using immunohistochemistry. ORF1p immunopositivity was detected in the vast majority [110/112 (98.2%)] of dysplastic and neoplastic (CIN and invasive cancer) specimens, whereas 19/24 (79.2%) of normal cervical specimens lacked ORF1p expression. The observed pattern of ORF1p expression showed a progressively increasing extent and intensity with advancing CIN grades. CIN I exhibited mild ORF1p expression in the lower one or two-thirds of the cervical epithelium [14/16 (87.5%)], whereas CIN II demonstrated moderate to strong ORF1p expression spanning the lower two-thirds [29/46 (63.0%)]. Pronounced transepithelial ORF1p immunopositivity characterized CIN III cases [13/14 (92.8%)] and cervical cancer [30/32 (93.8%)]. These findings propose ORF1p as a valuable indicator even for detecting CIN I, effectively discerning them from normal cervical tissue (p < 0.0001). Our findings underscore the potential of ORF1p as an early diagnostic marker for cervical neoplasia.

6.
Diagn Pathol ; 19(1): 85, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907257

RESUMEN

BACKGROUND: Human pulmonary dirofilariasis (HPD) is rare in Hungary, and it stems from Dirofilaria immitis, mainly transmitted through mosquito bites, with dogs as primary hosts. Despite its prevalence in veterinary settings, human cases are infrequent. Historically, Mediterranean countries report most HPD cases, but sporadic cases occur in temperate European regions. Radiologically, HPD often manifests in a non-specific manner, resembling pulmonary neoplasms, leading to unnecessary surgery and patient distress. METHODS: This study presents a notable case series from Hungary, encompassing a 12-year period, documenting 5 instances of HPD with the aim to provide baseline estimate of occurrence for future comparison. RESULTS: Among the patients studied, all were of middle age (median: 52 years, range: 37-69) and exhibited tumor-like lesions, primarily localized to the right lung, necessitating lobectomy or wedge resection. Histological examination consistently revealed a necrotizing granulomatous response characterized by remnants of helminths, without the presence of ovules. Furthermore, rigorous diagnostic procedures excluded other potential infectious agents through specialized staining techniques. Polymerase chain reaction analysis definitively confirmed the diagnosis of HPD in each case. CONCLUSIONS: This case series highlights HPD as a seldom zoonosis, with a probable escalation in its occurrence within temperate regions. Therefore, clinicians should maintain a heightened awareness of HPD in the differential diagnosis of pulmonary coin lesions. Early recognition and diagnosis are paramount for appropriate management and prevention of potential complications associated with this increasingly recognized infectious entity.


Asunto(s)
Dirofilariasis , Enfermedades Pulmonares Parasitarias , Humanos , Dirofilariasis/diagnóstico , Dirofilariasis/epidemiología , Dirofilariasis/parasitología , Dirofilariasis/patología , Hungría/epidemiología , Persona de Mediana Edad , Masculino , Adulto , Femenino , Animales , Anciano , Enfermedades Pulmonares Parasitarias/epidemiología , Enfermedades Pulmonares Parasitarias/parasitología , Enfermedades Pulmonares Parasitarias/diagnóstico , Dirofilaria immitis/aislamiento & purificación , Pulmón/parasitología , Pulmón/patología
7.
Sci Rep ; 14(1): 14912, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942922

RESUMEN

Breast cancer is a prevalent and significant cause of mortality in women, and manifests as six molecular subtypes. Its further histologic classification into non-invasive ductal or lobular carcinoma (DCIS) and invasive carcinoma (ILC or IDC) underscores its heterogeneity. The ubiquitin-proteasome system plays a crucial role in breast cancer, with inhibitors targeting the 26S proteasome showing promise in clinical treatment. The Cullin-RING ubiquitin ligases, including CUL3, have direct links to breast cancer. This study focuses on CUL3 as a potential biomarker, leveraging high-throughput sequencing, gene expression profiling, experimental and data analysis tools. Through comprehensive analysis using databases like GEPIA2 and UALCAN, as well as TCGA datasets, CUL3's expression and its association with prognostic values were assessed. Additionally, the impact of CUL3 overexpression was explored in MCF-7 and MDA-MB-231 breast cancer cell lines, revealing distinct differences in molecular and phenotypic characteristics. We further profiled its expression and localization in breast cancer tissues identifying prominent differences between luminal A and TNBC tumors. Conclusively, CUL3 was found to be associated with cell cycle progression, and DNA damage response, exhibiting diverse roles depending on the tumor's molecular type. It exhibits a tendency to act as an oncogene in triple-negative tumors and as a tumor suppressor in luminal A types, suggesting a potential significance in breast cancer progression and therapeutic directions.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Proteínas Cullin , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas Cullin/metabolismo , Proteínas Cullin/genética , Femenino , Pronóstico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Perfilación de la Expresión Génica , Células MCF-7 , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo
8.
bioRxiv ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38746333

RESUMEN

While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making.

9.
J Biotechnol ; 389: 61-67, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38692356

RESUMEN

BACKGROUND: Testicular cancer is the most common solid malignancy among men aged 15-35. Radical orchiectomy and platinum-based chemotherapy (BEP) are curative in the majority of patients, including advanced, metastatic cases. According to current urooncology guidelines all non-seminoma patients harbouring post-chemotherapy residual masses of ≥ 1 cm should undergo salvage retroperitoneal lymph node dissection (RPLND). However, only 10% of residual tumors contain viable disease. OBJECTIVE: To assess patient outcomes and complications considering different treatment regimens and clinical characteristics. MATERIALS AND METHODS: In a retrospective cross-sectional study patients (n=127) who underwent postchemotherapy RPLND between 2007 and 2023 at our referral center were evaluated. The patients received systemic treatment at various oncology centers. The number of BEP cycles received were occasionally different from standard. Only patients with normal postchemotherapy serum tumor markers and primary testicular or extragonadal germ cell neoplasms were included. Treatment groups were established according to the number of BEP cycles received, and the extent of RPLND (bilateral or modified template). Treatment outcomes and complications were assessed. RESULTS: Standard 3-4 courses of BEP were received by 100 (78,7%) patients, while 11 (8,7%) patients underwent less, and 16 (12,6%) more courses than standard. On histopathologic evaluation viable germ cell tumor, teratoma, and necrosis/fibrosis was present in 26 (20,5%), 67 (52,7%) and 34 (26,8%) of specimen, respectively. In the 5-6 BEP series subgroup high rate of viable disease (37,5%) was found and significantly more nephrectomies were performed, than other chemotherapy subgroups. Extratesticular GCT, viable disease in residual mass or progression after RPLND indicated lower survival. Mild (Clavien-Dindo I-II) or no postoperative complications were reported in 93,7% of cases. CONCLUSIONS: The study suggests no significant benefit from exceeding 3-4 courses of BEP. Timely salvage RPLND should be performed in high volume centers for optimal treatment outcomes with acceptable complication rates. Adherence to the Heidenreich criteria is advisable where practical.


Asunto(s)
Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Humanos , Masculino , Neoplasias Testiculares/patología , Neoplasias Testiculares/tratamiento farmacológico , Neoplasias Testiculares/terapia , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Neoplasias de Células Germinales y Embrionarias/terapia , Neoplasias de Células Germinales y Embrionarias/patología , Estudios Retrospectivos , Adulto , Estudios Transversales , Adulto Joven , Resultado del Tratamiento , Escisión del Ganglio Linfático , Persona de Mediana Edad , Adolescente , Neoplasia Residual , Orquiectomía , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Terapia Combinada
10.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38545623

RESUMEN

The utilization of PD1 and CTLA4 inhibitors has revolutionized the treatment of malignant melanoma (MM). However, resistance to targeted and immune-checkpoint-based therapies still poses a significant problem. Here we mine large scale MM proteogenomic data integrating it with MM cell line dependency screen, and drug sensitivity data to identify druggable targets and forecast treatment efficacy and resistance. Leveraging protein profiles from established MM subtypes and molecular structures of 82 cancer treatment drugs, we identified nine candidate hub proteins, mTOR, FYN, PIK3CB, EGFR, MAPK3, MAP4K1, MAP2K1, SRC and AKT1, across five distinct MM subtypes. These proteins serve as potential drug targets applicable to one or multiple MM subtypes. By analyzing transcriptomic data from 48 publicly accessible melanoma cell lines sourced from Achilles and CRISPR dependency screens, we forecasted 162 potentially targetable genes. We also identified genetic resistance in 260 genes across at least one melanoma subtype. In addition, we employed publicly available compound sensitivity data (Cancer Therapeutics Response Portal, CTRPv2) on the cell lines to assess the correlation of compound effectiveness within each subtype. We have identified 20 compounds exhibiting potential drug impact in at least one melanoma subtype. Remarkably, employing this unbiased approach, we have uncovered compounds targeting ferroptosis, that demonstrate a striking 30x fold difference in sensitivity among different subtypes. This implies that the proteogenomic classification of melanoma has the potential to predict sensitivity to ferroptosis compounds. Our results suggest innovative and novel therapeutic strategies by stratifying melanoma samples through proteomic profiling, offering a spectrum of novel therapeutic interventions and prospects for combination therapy. Highlights: (1) Proteogenomic subtype classification can define the landscape of genetic dependencies in melanoma (2) Nine proteins from molecular subtypes were identified as potential drug targets for specified MM patients (3) 20 compounds identified that show potential effectiveness in at least one melanoma subtype (4) Proteogenomics can predict specific ferroptosis inducers, HDAC, and RTK Inhibitor sensitivity in melanoma subtypes.

11.
J Biotechnol ; 380: 20-28, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38122830

RESUMEN

Cancer stands as one of the most common and lethal diseases, imposing a substantial burden on global mortality rates. Breast cancer is distinct from other forms of cancer in which it is the primary cause of death for women. Early detection of breast cancer can significantly lower the risk of mortality, improving the prognosis for those who are affected. The death rate of breast cancer has been steadily rising, according to epidemiological data, especially since the COVID-19 pandemic. This emphasizes the necessity of sensitive and precise technologies that can be utilized in early breast cancer diagnosis. In this process, biomarkers play a pivotal role by facilitating the early detection and diagnosis of breast cancer. Currently, a wide variety of cancer biomarkers have been identified, improving the accuracy of cancer diagnosis. These biomarkers can be applied in liquid biopsies as well as on solid tissues. In the context of breast cancer, biomarkers are particularly valuable for determining who is predisposed to the disease, predicting prognosis at the time of diagnosis, and selecting the best course of therapy. This review comprehensively explores the recently developed gene-based biomarkers from biofluids that are used in the context of breast cancer, as well as the conventional and cutting-edge techniques that have been employed for breast cancer diagnosis.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Pandemias , Biopsia Líquida/métodos , Pronóstico , Biomarcadores de Tumor/genética
12.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958852

RESUMEN

We aimed to investigate the contribution of co-translational protein aggregation to the chemotherapy resistance of tumor cells. Increased co-translational protein aggregation reflects altered translation regulation that may have the potential to buffer transcription under genotoxic stress. As an indicator for such an event, we followed the cytoplasmic aggregation of RPB1, the aggregation-prone largest subunit of RNA polymerase II, in biopsy samples taken from patients with invasive carcinoma of no special type. RPB1 frequently aggregates co-translationally in the absence of proper HSP90 chaperone function or in ribosome mutant cells as revealed formerly in yeast. We found that cytoplasmic foci of RPB1 occur in larger sizes in tumors that showed no regression after therapy. Based on these results, we propose that monitoring the cytoplasmic aggregation of RPB1 may be suitable for determining-from biopsy samples taken before treatment-the effectiveness of neoadjuvant chemotherapy.


Asunto(s)
ARN Polimerasa II , Proteínas de Saccharomyces cerevisiae , Humanos , ARN Polimerasa II/genética , Terapia Neoadyuvante , Agregado de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Biomolecules ; 13(10)2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37892205

RESUMEN

DNA repair pathways trigger robust downstream responses, making it challenging to select suitable reference genes for comparative studies. In this study, our goal was to identify the most suitable housekeeping genes to perform comparable molecular analyses for DNA damage-related studies. Choosing the most applicable reference genes is important in any kind of target gene expression-related quantitative study, since using the housekeeping genes improperly may result in false data interpretation and inaccurate conclusions. We evaluated the expressional changes of eight well-known housekeeping genes (i.e., 18S rRNA, B2M, eEF1α1, GAPDH, GUSB, HPRT1, PPIA, and TBP) following treatment with the DNA-damaging agents that are most frequently used: ultraviolet B (UVB) non-ionizing irradiation, neocarzinostatin (NCS), and actinomycin D (ActD). To reveal the significant changes in the expression of each gene and to determine which appear to be the most acceptable ones for normalization of real-time quantitative polymerase chain reaction (RT-qPCR) data, comparative and statistical algorithms (such as absolute quantification, Wilcoxon Rank Sum Test, and independent samples T-test) were conducted. Our findings clearly demonstrate that the genes commonly employed as reference candidates exhibit substantial expression variability, and therefore, careful consideration must be taken when designing the experimental setup for an accurate and reproducible normalization of RT-qPCR data. We used the U2OS cell line since it is generally accepted and used in the field of DNA repair to study DNA damage-induced cellular responses. Based on our current data in U2OS cells, we suggest using 18S rRNA, eEF1α1, GAPDH, GUSB, and HPRT1 genes for UVB-induced DNA damage-related studies. B2M, HPRT1, and TBP genes are recommended for NCS treatment, while 18S rRNA, B2M, and PPIA genes can be used as suitable internal controls in RT-qPCR experiments for ActD treatment. In summary, this is the first systematic study using a U2OS cell culture system that offers convincing evidence for housekeeping gene selection following treatment with various DNA-damaging agents. Here, we unravel an indispensable issue for performing and assessing trustworthy DNA damage-related differential gene expressional analyses, and we create a "zero set" of potential reference gene candidates.


Asunto(s)
ADN , Genes Esenciales , Humanos , ARN Ribosómico 18S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Técnicas de Cultivo de Célula , Perfilación de la Expresión Génica
14.
Cancers (Basel) ; 15(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36765669

RESUMEN

Matrix metalloproteinase-9 (MMP-9) degrades the extracellular matrix, contributes to tumour cell invasion and metastasis, and its elevated level in brain tumour tissues indicates poor prognosis. High-risk tissue biopsy can be replaced by liquid biopsy; however, the blood-brain barrier (BBB) prevents tumour-associated components from entering the peripheral blood, making the development of blood-based biomarkers challenging. Therefore, we examined the MMP-9 content of small extracellular vesicles (sEVs)-which can cross the BBB and are stable in body fluids-to characterise tumours with different invasion capacity. From four patient groups (glioblastoma multiforme, brain metastases of lung cancer, meningioma, and lumbar disc herniation as controls), 222 serum-derived sEV samples were evaluated. After isolating and characterising sEVs, their MMP-9 content was measured by ELISA and assessed statistically (correlation, paired t-test, Welch's test, ANOVA, ROC). We found that the MMP-9 content of sEVs is independent of gender and age, but is affected by surgical intervention, treatment, and recurrence. We found a relation between low MMP-9 level in sEVs (<28 ppm) and improved survival (8-month advantage) of glioblastoma patients, and MMP-9 levels showed a positive correlation with aggressiveness. These findings suggest that vesicular MMP-9 level might be a useful prognostic marker for brain tumours.

15.
Cells ; 11(19)2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-36231067

RESUMEN

The quantitative analysis of datasets achieved by single molecule localization microscopy is vital for studying the structure of subcellular organizations. Cluster analysis has emerged as a multi-faceted tool in the structural analysis of localization datasets. However, the results it produces greatly depend on the set parameters, and the process can be computationally intensive. Here we present a new approach for structural analysis using lacunarity. Unlike cluster analysis, lacunarity can be calculated quickly while providing definitive information about the structure of the localizations. Using simulated data, we demonstrate how lacunarity results can be interpreted. We use these interpretations to compare our lacunarity analysis with our previous cluster analysis-based results in the field of DNA repair, showing the new algorithm's efficiency.


Asunto(s)
Microscopía , Imagen Individual de Molécula , Análisis por Conglomerados , Reparación del ADN , Microscopía/métodos
16.
Cells ; 11(17)2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36078129

RESUMEN

Breast cancer is the most frequent cancer with a high fatality rate amongst women worldwide. Diagnosing at an early stage is challenging, and due to the limitations of the currently used techniques, including mammography and imaging diagnostics, it still remains unascertained. Serum biomarkers can be a solution for this as they can be isolated in a less painful, more cost-effective, and minimally invasive manner. In this study, we shed light on the relevant role of multiple microRNAs (miRNAs) as potential biomarkers in breast cancer diagnosis. We monitored the expressional changes of 15 pre-selected miRNAs in a large cohort, including 65 patients with breast cancer and 42 healthy individuals. We performed thorough statistical analyses on the cohort sample set and determined the diagnostic accuracy of individual and multiple miRNAs. Our study reveals a potential improvement in diagnostics by implicating the monitoring of miR-15a+miR-16+miR-221 expression in breast cancer management.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Biomarcadores de Tumor/metabolismo , Mama/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Humanos , MicroARNs/metabolismo
17.
Pathol Oncol Res ; 28: 1610345, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586183

RESUMEN

Routine molecular tumour diagnostics are augmented by DNA-based qualitative and quantitative molecular techniques detecting mutations of DNA. However, in the past decade, it has been unravelled that the phenotype of cancer, as it's an extremely complex disease, cannot be fully described and explained by single or multiple genetic variants affecting only the coding regions of the genes. Moreover, studying the manifestation of these somatic mutations and the altered transcription programming-driven by genomic rearrangements, dysregulation of DNA methylation and epigenetic landscape-standing behind the tumorigenesis and detecting these changes could provide a more detailed characterisation of the tumour phenotype. Consequently, novel comparative cancer diagnostic pipelines, including DNA- and RNA-based approaches, are needed for a global assessment of cancer patients. Here we report, that by monitoring the expression patterns of key tumour driver genes by qPCR, the normal and the tumorous samples can be separated into distinct categories. Furthermore, we also prove that by examining the transcription signatures of frequently affected genes at 3p25, 3p21 and 9p21.3 genomic regions, the ccRCC (clear cell renal cell carcinoma) and non-tumorous kidney tissues can be distinguished based on the mRNA level of the selected genes. Our results open new diagnostics possibilities where the mRNA signatures of tumour drivers can supplement the DNA-based approaches providing a more precise diagnostics opportunity leading to determine more precise therapeutic protocols.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Renales/diagnóstico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , ARN Mensajero , Transcripción Genética/genética
18.
PLoS One ; 17(5): e0267615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35511765

RESUMEN

DNA double-strand breaks are one of the most deleterious lesions for the cells, therefore understanding the macromolecular interactions of the DNA repair-related mechanisms is essential. DNA damage triggers transcription silencing at the damage site, leading to the removal of the elongating RNA polymerase II (S2P RNAPII) from this locus, which provides accessibility for the repair factors to the lesion. We previously demonstrated that following transcription block, p53 plays a pivotal role in transcription elongation by interacting with S2P RNAPII. In the current study, we reveal that p53 is involved in the fine-tune regulation of S2P RNAPII ubiquitylation. Furthermore, we emphasize the potential role of p53 in delaying the premature ubiquitylation and the subsequent chromatin removal of S2P RNAPII as a response to transcription block.


Asunto(s)
ARN Polimerasa II , Proteína p53 Supresora de Tumor , Daño del ADN , Reparación del ADN , ARN Polimerasa II/metabolismo , Transcripción Genética , Proteína p53 Supresora de Tumor/genética , Ubiquitinación
19.
Sci Rep ; 12(1): 5870, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393473

RESUMEN

Ubiquitylation is critical for preventing aberrant DNA repair and for efficient maintenance of genome stability. As deubiquitylases (DUBs) counteract ubiquitylation, they must have a great influence on many biological processes, including DNA damage response. To elucidate the role of DUBs in DNA repair in Drosophila melanogaster, systematic siRNA screening was applied to identify DUBs with a reduced survival rate following exposure to ultraviolet and X-ray radiations. As a secondary validation, we applied the direct repeat (DR)-white reporter system with which we induced site-specific DSBs and affirmed the importance of the DUBs Ovarian tumor domain-containing deubiquitinating enzyme 1 (Otu1), Ubiquitin carboxyl-terminal hydrolase 5 (Usp5), and Ubiquitin carboxyl-terminal hydrolase 34 (Usp34) in DSB repair pathways using Drosophila. Our results indicate that the loss of Otu1 and Usp5 induces strong position effect variegation in Drosophila eye following I-SceI-induced DSB deployment. Otu1 and Usp5 are essential in DNA damage-induced cellular response, and both DUBs are required for the fine-tuned regulation of the non-homologous end joining pathway. Furthermore, the Drosophila DR-white assay demonstrated that homologous recombination does not occur in the absence of Usp34, indicating an indispensable role of Usp34 in this process.


Asunto(s)
Reparación del ADN , Proteínas de Drosophila , Drosophila melanogaster , Proteasas Ubiquitina-Específicas , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Hidrolasas/metabolismo , Ubiquitina/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
20.
Transl Oncol ; 20: 101420, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35417813

RESUMEN

Patients diagnosed with clear cell renal cell carcinoma (ccRCC) have poor prognosis for recurrence and approximately 30-40% of them will later develop metastases. For this reason, the appropriate diagnosis and the more detailed molecular characterisation of the primary tumour, including its susceptibility to metastasis, are crucial to select the proper adjuvant therapy by which the most prosperous outcome can be achieved. Nowadays, clinicopathological variables are used for classification of the tumours. Apart from these, molecular biomarkers are also necessary to improve risk classification, which would be the most beneficial amongst modern adjuvant therapies. As a potential molecular biomarker, to follow the transcriptional kinetics in ccRCC patients (n=30), we analysed epigenetic changes (γH2A.X, H3K4me3, and H3K9me3) and the alterations in the level of RNA polymerase II (RNAPII) by immunohistochemical staining on dissected tissue sections. The variabilities between the tumorous and non-tumorous parts of the tissue were detected using quantitative image analysis by monitoring 30 cells from different positions of either the tumorous or the non-tumorous part of the tissue sections. Data obtained from the analyses were used to identify potential prognostic features and to associate them with the progression. These markers might have a value to predict patient outcomes based on their individual cellular background. These results also support that detection of any alteration in the level of H3K4me3, H3K9me3, and γH2A.X can account for valuable information for presuming the progression of ccRCC and the clinical benefits to select the most efficient personalised therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA