Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 960444, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032069

RESUMEN

T cells develop in the thymus from lymphoid primed multipotent progenitors or common lymphoid progenitors into αß and γδ subsets. The basic helix-loop-helix transcription factors, E proteins, play pivotal roles at multiple stages from T cell commitment to maturation. Inhibitors of E proteins, Id2 and Id3, also regulate T cell development while promoting ILC differentiation. Recent findings suggest that the thymus can also produce innate lymphoid cells (ILCs). In this review, we present current findings that suggest the balance between E and Id proteins is likely to be critical for controlling the bifurcation of T cell and ILC fates at early stages of T cell development.


Asunto(s)
Proteína 2 Inhibidora de la Diferenciación , Linfocitos T , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Linaje de la Célula , Inmunidad Innata , Proteínas Inhibidoras de la Diferenciación , Linfocitos , Factores de Transcripción
2.
iScience ; 25(2): 103732, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35118353

RESUMEN

The thymus has a high capacity to support the differentiation of ILCs, especially when E protein transcription factors are ablated. Whether it contributes to the homeostasis of ILC pools in tissues is not clear. Single-cell RNA sequencing analysis shows a substantial amount of ILC precursors in wild type but not athymic nude blood. The precursors express CD3 intracellularly (ic) but not on the surface. The abundance of Lin-CD127+CD62L+icCD3ε+ precursors varies with age, peaking at 2-3 months. These cells can differentiate into various ILC subsets on OP9-DL1 stroma in vitro. In the lung, small intestine, and epidermis, icCD3ε+ cells differentiate into diverse ILC subsets in different tissue environments in steady state. Helminth infection promotes their differentiation toward functional ILC2s. Thus, the thymus appears to play a role in replenishing ILC pools in different peripheral tissues. Because thymic activity is age-dependent, this finding may help explain age-related differences in immune responses.

3.
BMC Immunol ; 22(1): 46, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34256699

RESUMEN

BACKGROUND: Acute graft-versus-host disease (aGVHD) is one of the most common causes of morbidity for patients undergoing allogeneic stem cell transplantation. There is preliminary evidence that activated Group 2 innate lymphoid cells (ILC2s) from wild type (WT) mice reduces the lethality of aGVHD and is effective in treating lower gastrointestinal (GI) tract manifestations of aGVHD. This raises the prospect that ILC2s may be used for cell-based therapy of aGVHD but vigorous investigation is necessary to assess their impacts on different aspects of aGVHD. Genetically engineered mice which either express Id1 protein (Id1tg/tg), an inhibitor of E protein transcription factors or have E protein genes knocked out (dKO) in the thymus produce massive numbers of ILC2s, thus allowing extensive evaluation of ILC2s. We investigated whether these ILC2s have protective effects in aGVHD as WT ILC2s do using an established mouse model of aGVHD. RESULTS: bone marrow transplant was performed by irradiating BALB/c strain of recipient mice and transplanting with bone marrow and T cells from the MHC-disparate C57BL/6 strain. We isolated ILC2s from Id1tg/tg and dKO mice and co-transplanted them to study their effects. Our results confirm that activated ILC2s have a protective role in aGVHD, but the effects varied depending on the origin of ILC2s. Co-transplantation of ILC2s from Id1tg/tg mice were beneficial in aGVHD and are especially helpful in ameliorating the skin manifestations of aGVHD. However, ILC2s from dKO mice were less effective at the protection and behaved differently depending on if the cells were isolated from dKO mice were pre-treated with IL-25 in vivo. CONCLUSION: These findings support the notion that thymus-derived ILC2s from Id1tg/tg mice are protective against aGVHD, with a significant improvement of skin lesions and they behave differently from dKO mice in the setting of aGVHD.


Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Trasplante de Células Madre Hematopoyéticas , Linfocitos/inmunología , Piel/patología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Proteína 1 Inhibidora de la Diferenciación/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células Th2/inmunología , Trasplante Homólogo
4.
J Biol Chem ; 295(44): 14866-14877, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32817168

RESUMEN

Group 2 innate lymphoid cells (ILC2s) represent a subset of newly discovered immune cells that are involved in immune reactions against microbial pathogens, host allergic reactions, as well as tissue repair. The basic helix-loop-helix transcription factors collectively called E proteins powerfully suppress the differentiation of ILC2s from bone marrow and thymic progenitors while promoting the development of B and T lymphocytes. How E proteins exert the suppression is not well understood. Here we investigated the underlying molecular mechanisms using inducible gain and loss of function approaches in ILC2s and their precursors, respectively. Cross-examination of RNA-seq and ATAC sequencing data obtained at different time points reveals a set of genes that are likely direct targets of E proteins. Consequently, a widespread down-regulation of chromatin accessibility occurs at a later time point, possibly due to the activation of transcriptional repressor genes such as Cbfa2t3 and Jdp2 The large number of genes repressed by gain of E protein function leads to the down-regulation of a transcriptional network important for ILC2 differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Redes Reguladoras de Genes , Inmunidad Innata , Linfocitos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Cromatina/metabolismo , Expresión Génica , Linfocitos/citología , Linfocitos/inmunología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...