Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(30): 20629-20644, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037444

RESUMEN

The M2 proteins of influenza A and B viruses form acid-activated proton channels that are essential for the virus lifecycle. Proton selectivity is achieved by a transmembrane (TM) histidine whereas gating is achieved by a tryptophan residue. Although this functional apparatus is conserved between AM2 and BM2 channels, AM2 conducts protons exclusively inward whereas BM2 conducts protons in either direction depending on the pH gradient. Previous studies showed that in AM2, mutations of D44 abolished inward rectification of AM2, suggesting that the tryptophan gate is destabilized. To elucidate how charged residues C-terminal to the tryptophan regulates channel gating, here we investigate the structure and dynamics of H19 and W23 in a BM2 mutant, GDR-BM2, in which three BM2 residues are mutated to the corresponding AM2 residues, S16G, G26D and H27R. Whole-cell electrophysiological data show that GDR-BM2 conducts protons with inward rectification, identical to wild-type (WT) AM2 but different from WT-BM2. Solid-state NMR 15N and 13C spectra of H19 indicate that the mutant BM2 channel contains higher populations of cationic histidine and neutral τ tautomers compared to WT-BM2 at acidic pH. Moreover, 19F NMR spectra of 5-19F-labeled W23 resolve three peaks at acidic pH, suggesting three tryptophan sidechain conformations. Comparison of these spectra with the tryptophan spectra of other M2 peptides suggests that these indole sidechain conformations arise from interactions with the C-terminal charged residues and with the N-terminal cationic histidine. Taken together, these solid-state NMR data show that inward rectification in M2 proton channels is accomplished by tryptophan interactions with charged residues on both its C-terminal and N-terminal sides. Gating of these M2 proton channels is thus accomplished by a multi-residue complex with finely tuned electrostatic and aromatic interactions.


Asunto(s)
Histidina , Virus de la Influenza B , Protones , Triptófano , Proteínas de la Matriz Viral , Triptófano/química , Histidina/química , Histidina/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/genética , Virus de la Influenza B/química , Virus de la Influenza B/genética , Virus de la Influenza A/química , Virus de la Influenza A/metabolismo , Virus de la Influenza A/genética , Concentración de Iones de Hidrógeno , Canales Iónicos/química , Canales Iónicos/metabolismo , Canales Iónicos/genética , Mutación , Simulación de Dinámica Molecular , Proteínas Viroporinas
2.
Protein Sci ; 33(4): e4923, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501465

RESUMEN

The envelope (E) proteins of coronaviruses (CoVs) form cation-conducting channels that are associated with the pathogenicity of these viruses. To date, high-resolution structural information about these viroporins is limited to the SARS-CoV E protein. To broaden our structural knowledge of other members of this family of viroporins, we now investigate the conformation of the E protein of the human coronavirus (hCoV), NL63. Using two- and three-dimensional magic-angle-spinning NMR, we have measured 13 C and 15 N chemical shifts of the transmembrane domain of E (ETM), which yielded backbone (ϕ, ψ) torsion angles. We further measured the water accessibility of NL63 ETM at neutral pH versus acidic pH in the presence of Ca2+ ions. These data show that NL63 ETM adopts a regular α-helical conformation that is unaffected by pH and the N-terminal ectodomain. Interestingly, the water accessibility of NL63 ETM increases only modestly at acidic pH in the presence of Ca2+ compared to neutral pH, in contrast to SARS ETM, which becomes much more hydrated at acidic pH. This difference suggests a structural basis for the weaker channel conductance of α-CoV compared to ß-CoV E proteins. The weaker E channel activity may in turn contribute to the reduced virulence of hCoV-NL63 compared to SARS-CoV viruses.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Humanos , Proteínas Viroporinas , Proteínas del Envoltorio Viral/química , Infecciones por Coronavirus/metabolismo , Agua
3.
New Phytol ; 242(2): 524-543, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38413240

RESUMEN

The Poaceae family of plants provides cereal crops that are critical for human and animal nutrition, and also, they are an important source of biomass. Interacting plant cell wall components give rise to recalcitrance to digestion; thus, understanding the wall molecular architecture is important to improve biomass properties. Xylan is the main hemicellulose in grass cell walls. Recently, we reported structural variation in grass xylans, suggesting functional specialisation and distinct interactions with cellulose and lignin. Here, we investigated the functions of these xylans by perturbing the biosynthesis of specific xylan types. We generated CRISPR/Cas9 knockout mutants in Brachypodium distachyon XAX1 and GUX2 genes involved in xylan substitution. Using carbohydrate gel electrophoresis, we identified biochemical changes in different xylan types. Saccharification, cryo-SEM, subcritical water extraction and ssNMR were used to study wall architecture. BdXAX1A and BdGUX2 enzymes modify different types of grass xylan. Brachypodium mutant walls are likely more porous, suggesting the xylan substitutions directed by both BdXAX1A and GUX2 enzymes influence xylan-xylan and/or xylan-lignin interactions. Since xylan substitutions influence wall architecture and digestibility, our findings open new avenues to improve cereals for food and to use grass biomass for feed and the production of bioenergy and biomaterials.


Asunto(s)
Brachypodium , Xilanos , Animales , Humanos , Xilanos/metabolismo , Lignina/metabolismo , Brachypodium/metabolismo , Pared Celular/metabolismo
4.
Inorg Chem ; 59(11): 7700-7709, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32383584

RESUMEN

Here we report the first successful attempt to identify spin-crossover compounds in solutions of metal complexes produced by mixing different ligands and an appropriate metal salt by variable-temperature nuclear magnetic resonance (NMR) spectroscopy. Screening the spin state of a cobalt(II) ion in a series of thus obtained homoleptic and heteroleptic compounds of terpyridines (terpy) and 2,6-bis(pyrazol-3-yl)pyridines (3-bpp) by using this NMR-based approach, which only relies on the temperature behavior of chemical shifts, revealed the first cobalt(II) complexes with a 3-bpp ligand to undergo a thermally induced spin-crossover. A simple analysis of NMR spectra collected from mixtures of different compounds without their isolation or purification required by the current method of choice, the Evans technique, thus emerges as a powerful tool in a search for new spin-crossover compounds and their molecular design boosted by wide possibilities for chemical modifications in heteroleptic complexes.

5.
Phys Chem Chem Phys ; 21(16): 8201-8204, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30950488

RESUMEN

Here we report a combined use of THz-EPR and NMR spectroscopy for obtaining a detailed electronic structure of a long-known high-spin complex, cobalt(ii) bis[tris(pyrazolyl)borate]. The lowest inter-Kramers transition was directly measured by THz-EPR spectroscopy, while the energies of higher Kramers doublets were estimated by a recently proposed NMR-based approach. Together, they produced magnetic parameters for a full model that explicitly includes spin-orbit coupling. This approach is applicable to all transition metal ions for which the spin-orbit coupling cannot be treated perturbatively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA