Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 343-356, 2024 01.
Article En | MEDLINE | ID: mdl-37439806

Lung cancer is the second most prevalent type of cancer and is responsible for the highest number of cancer-related deaths worldwide. Non-small-cell lung cancer (NSCLC) makes up the majority of lung cancer cases. Zerumbone (ZER) is natural compound commonly found in the roots of Zingiber zerumbet which has recently demonstrated anti-cancer activity in both in vitro and in vivo studies. Despite their medical benefits, ZER has low aqueous solubility, poor GI absorption and oral bioavailability that hinders its effectiveness. Liquid crystalline nanoparticles (LCNs) are novel drug delivery carrier that have tuneable characteristics to enhance and ease the delivery of bioactive compounds. This study aimed to formulate ZER-loaded LCNs and investigate their effectiveness against NSCLC in vitro using A549 lung cancer cells. ZER-LCNs, prepared in the study, inhibited the proliferation and migration of A549 cells. These inhibitory effects were superior to the effects of ZER alone at a concentration 10 times lower than that of free ZER, demonstrating a potent anti-cancer activity of ZER-LCNs. The underlying mechanisms of the anti-cancer effects by ZER-LCNs were associated with the transcriptional regulation of tumor suppressor genes P53 and PTEN, and metastasis-associated gene KRT18. The protein array data showed downregulation of several proliferation associated proteins such as AXL, HER1, PGRN, and BIRC5 and metastasis-associated proteins such as DKK1, CAPG, CTSS, CTSB, CTSD, and PLAU. This study provides evidence of potential for increasing the potency and effectiveness of ZER with LCN formulation and developing ZER-LCNs as a treatment strategy for mitigation and treatment of NSCLC.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Nanoparticles , Sesquiterpenes , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Lung Neoplasms/drug therapy , Apoptosis , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Cell Proliferation
2.
Nutrients ; 14(18)2022 Sep 16.
Article En | MEDLINE | ID: mdl-36145202

Chronic inflammation of the respiratory tract is one of the most concerning public health issues, as it can lead to chronic respiratory diseases (CRDs), some of which are more detrimental than others. Chronic respiratory diseases include chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and pulmonary fibrosis. The conventional drug therapies for the management and treatment of CRDs only address the symptoms and fail to reverse or recover the chronic-inflammation-mediated structural and functional damage of the respiratory tract. In addition, the low efficacy and adverse effects of these drugs have directed the attention of researchers towards nutraceuticals in search of potential treatment strategies that can not only ameliorate CRD symptoms but also can repair and reverse inflammatory damage. Hence, there is a growing interest toward investigating the medicinal benefits of nutraceuticals, such as rutin, curcumin, zerumbone, and others. Nutraceuticals carry many nutritional and therapeutic properties, including anti-inflammatory, antioxidant, anticancer, antidiabetic, and anti-obesity properties, and usually do not have as many adverse effects, as they are naturally sourced. Recently, the use of nanoparticles has also been increasingly studied for the nano drug delivery of these nutraceuticals. The discrete size of nanoparticles holds great potential for the level of permeability that can be achieved when transporting these nutraceutical compounds. This review is aimed to provide an understanding of the use of nutraceuticals in combination with nanoparticles against CRDs and their mechanisms involved in slowing down or reversing the progression of CRDs by inhibiting pro-inflammatory signaling pathways.


Curcumin , Pulmonary Disease, Chronic Obstructive , Anti-Inflammatory Agents/pharmacology , Antioxidants/therapeutic use , Curcumin/therapeutic use , Functional Food , Humans , Hypoglycemic Agents/therapeutic use , Inflammation/drug therapy , Pulmonary Disease, Chronic Obstructive/drug therapy , Rutin/therapeutic use
3.
Molecules ; 27(9)2022 May 09.
Article En | MEDLINE | ID: mdl-35566388

The inflammatory response is a central aspect of the human immune system that acts as a defense mechanism to protect the body against infections and injuries. A dysregulated inflammatory response is a major health concern, as it can disrupt homeostasis and lead to a plethora of chronic inflammatory conditions. These chronic inflammatory diseases are one of the major causes of morbidity and mortality worldwide and the need for them to be managed in the long term has become a crucial task to alleviate symptoms and improve patients' overall quality of life. Although various synthetic anti-inflammatory agents have been developed to date, these medications are associated with several adverse effects that have led to poor therapeutic outcomes. The hunt for novel alternatives to modulate underlying chronic inflammatory processes has unveiled nature to be a plentiful source. One such example is agarwood, which is a valuable resinous wood from the trees of Aquilaria spp. Agarwood has been widely utilized for medicinal purposes since ancient times due to its ability to relieve pain, asthmatic symptoms, and arrest vomiting. In terms of inflammation, the major constituent of agarwood, agarwood oil, has been shown to possess multiple bioactive compounds that can regulate molecular mechanisms of chronic inflammation, thereby producing a multitude of pharmacological functions for treating various inflammatory disorders. As such, agarwood oil presents great potential to be developed as a novel anti-inflammatory therapeutic to overcome the drawbacks of existing therapies and improve treatment outcomes. In this review, we have summarized the current literature on agarwood and its bioactive components and have highlighted the potential roles of agarwood oil in treating various chronic inflammatory diseases.


Quality of Life , Thymelaeaceae , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Humans , Inflammation/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Wood
4.
Int J Pharm ; 617: 121617, 2022 Apr 05.
Article En | MEDLINE | ID: mdl-35218900

Management of chronic wound has an immense impact on social and economic conditions in the world. Healthcare costs, aging population, physical trauma, and comorbidities of diabetes and obesity seem to be the major factors of this increasing incidence of chronic wounds. Conditions of chronic wound could not restore functional epidermis; thus, delaying the closure of the wound opening in an expected manner. Failures in restoration of skin integrity delay healing due to changes in skin pathology, such as chronic ulceration or nonhealing. The role of different traditional medicines has been explored for use in the healing of cutaneous wounds, where several phytochemicals, such as flavonoids, alkaloids, phenolic acids, tannins are known to provide potential wound healing properties. However, the delivery of plant-based therapeutics could be improved by the novel platform of nanotechnology. Thus, the objectives of novel delivery strategies of principal bioactive from plant sources are to accelerate the wound healing process, avoid wound complications and enhance patient compliance. Therefore, the opportunities of nanotechnology-based drug delivery of natural wound healing therapeutics have been included in the present discussion with special emphasis on nanofibers, vesicular structures, nanoparticles, nanoemulsion, and nanogels.


Nanofibers , Wound Healing , Aged , Drug Delivery Systems , Humans , Nanotechnology , Skin/pathology
5.
Environ Sci Pollut Res Int ; 29(31): 46830-46847, 2022 Jul.
Article En | MEDLINE | ID: mdl-35171422

Non-small cell lung cancer (NSCLC) is reported to have a high incidence rate and is one of the most prevalent types of cancer contributing towards 85% of all incidences of lung cancer. Berberine is an isoquinoline alkaloid which offers a broad range of therapeutical and pharmacological actions against cancer. However, extremely low water solubility and poor oral bioavailability have largely restricted its therapeutic applications. To overcome these limitations, we formulated berberine-loaded liquid crystalline nanoparticles (LCNs) and investigated their in vitro antiproliferative and antimigratory activity in human lung epithelial cancer cell line (A549). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), trypan blue staining, and colony forming assays were used to evaluate the anti-proliferative activity, while scratch wound healing assay and a modified Boyden chamber assay were carried out to determine the anti-migratory activity. We also investigated major proteins associated with lung cancer progression. The developed nanoparticles were found to have an average particle size of 181.3 nm with spherical shape, high entrapment efficiency (75.35%) and have shown sustained release behaviour. The most remarkable findings reported with berberine-loaded LCNs were significant suppression of proliferation, inhibition of colony formation, inhibition of invasion or migration via epithelial mesenchymal transition, and proliferation related proteins associated with cancer progression. Our findings suggest that anti-cancer compounds with the problem of poor solubility and bioavailability can be overcome by formulating them into nanotechnology-based delivery systems for better efficacy. Further in-depth investigations into anti-cancer mechanistic research will expand and strengthen the current findings of berberine-LCNs as a potential NSCLC treatment option.


Berberine , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Nanoparticles , Berberine/pharmacology , Berberine/therapeutic use , Cell Line, Tumor , Cell Proliferation , Humans , Lung Neoplasms/drug therapy , Nanoparticles/chemistry
7.
J Pharm Sci ; 110(9): 3111-3117, 2021 09.
Article En | MEDLINE | ID: mdl-33989679

Human serum albumin or simply called albumin is a flexible protein employed as a carrier in the fabrication of albumin-based nanocarriers (ANCs) for the administration of cancer therapeutics. Albumin can contribute enhanced tumour specificity, reduced drug induced cytotoxicity and retain concentration of the therapeutically active agent such as drug, peptide, protein, and gene for a prolonged time duration. Nevertheless, apart from cancer management, ANCs are also employed in the diagnosis, imaging, and multimodal cancer therapy. This article figures out salient characteristics, design as well as categories of ANCs in the context of their application in cancer management. In addition, this review article discusses the fabrication methods of ANCs, use of ANCs in gene, cancer, and multimodal therapy along with cancer diagnosis and imaging. Lastly, this review also briefly discusses about (ANCs) formulations, commercial products, and those under clinical testing.


Nanoparticles , Neoplasms , Albumins , Drug Carriers/therapeutic use , Drug Delivery Systems , Humans , Neoplasms/drug therapy , Serum Albumin, Human
8.
Life Sci ; 276: 119436, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-33789146

Non-small cell lung cancer (NSCLC) is one of the major causes of cancer-related mortality globally. Despite the availability of therapeutic options, the improvement in patient survival is yet to be achieved. Recent advances in natural product (e.g., Rutin) research, therapeutic nanotechnology and especially the combination of both could aid in achieving significant improvements in the treatment or management of NSCLC. In this study, we explore the anti-cancer activity of Rutin-loaded liquid crystalline nanoparticles (LCNs) in an in vitro model where we have employed the A549 human lung epithelial carcinoma cell line. The anti-proliferative activity was determined by MTT and Trypan blue assays, whereas, the anti-migratory activity was evaluated by the scratch wound healing assay and a modified Boyden chamber assay. We also evaluated the anti-apoptotic activity by Annexin V-FITC staining, and the colony formation activity was studied using crystal violet staining. Here, we report that Rutin-LCNs showed promising anti-proliferative and anti-migratory activities. Furthermore, Rutin-LCNs also induced apoptosis in the A549 cells and inhibited colony formation. The findings warrant further detailed and in-depth anti-cancer mechanistic studies of Rutin-LCNs with a focus towards a potential therapeutic option for NSCLC. LCNs may help to enhance the solubility of Rutin used in the treatment of lung cancer and hence enhance the anticancer effect of Rutin.


Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Movement , Cell Proliferation , Liquid Crystals/chemistry , Lung Neoplasms/drug therapy , Nanoparticles/administration & dosage , Rutin/pharmacology , A549 Cells , Apoptosis , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/pathology , Nanoparticles/chemistry , Rutin/administration & dosage , Rutin/chemistry
9.
Life Sci ; 267: 118973, 2021 Feb 15.
Article En | MEDLINE | ID: mdl-33400932

Eosinophils are bi-lobed, multi-functional innate immune cells with diverse cell surface receptors that regulate local immune and inflammatory responses. Several inflammatory and infectious diseases are triggered with their build up in the blood and tissues. The mobilization of eosinophils into the lungs is regulated by a cascade of processes guided by Th2 cytokine generating T-cells. Recruitment of eosinophils essentially leads to a characteristic immune response followed by airway hyperresponsiveness and remodeling, which are hallmarks of chronic respiratory diseases. By analysing the dynamic interactions of eosinophils with their extracellular environment, which also involve signaling molecules and tissues, various therapies have been invented and developed to target respiratory diseases. Having entered clinical testing, several eosinophil targeting therapeutic agents have shown much promise and have further bridged the gap between theory and practice. Moreover, researchers now have a clearer understanding of the roles and mechanisms of eosinophils. These factors have successfully assisted molecular biologists to block specific pathways in the growth, migration and activation of eosinophils. The primary purpose of this review is to provide an overview of the eosinophil biology with a special emphasis on potential pharmacotherapeutic targets. The review also summarizes promising eosinophil-targeting agents, along with their mechanisms and rationale for use, including those in developmental pipeline, in clinical trials, or approved for other respiratory disorders.


Eosinophils/immunology , Respiration Disorders/immunology , Respiratory Tract Diseases/immunology , Animals , Cytokines/immunology , Cytokines/metabolism , Eosinophils/drug effects , Eosinophils/metabolism , Humans , Lung/metabolism , Lung/pathology , Respiration Disorders/metabolism , Respiration Disorders/physiopathology , Respiratory Tract Diseases/metabolism , Respiratory Tract Diseases/physiopathology , Th2 Cells/immunology , Th2 Cells/metabolism
10.
J Food Biochem ; 45(1): e13572, 2021 01.
Article En | MEDLINE | ID: mdl-33249629

In this study, we had developed Naringenin-loaded liquid crystalline nanoparticles (LCNs) and investigated the anti-inflammatory and anticancer activities of Naringenin-LCNs against human airway epithelium-derived basal cells (BCi-NS1.1) and human lung epithelial carcinoma (A549) cell lines, respectively. The anti-inflammatory potential of Naringenin-LCNs evaluated by qPCR revealed a decreased expression of IL-6, IL-8, IL-1ß, and TNF-α in lipopolysaccharide-induced BCi-NS1.1 cells. The activity of LCNs was comparable to the positive control drug Fluticasone propionate (10 nM). The anticancer activity was studied by evaluating the antiproliferative (MTT and trypan blue assays), antimigratory (scratch wound healing assay, modified Boyden chamber assay, and immunoblot), and anticolony formation activity in A549 cells. Naringenin LCNs showed promising antiproliferative, antimigratory, and anticolony formation activities in A549 cells, in vitro. Therefore, based on our observations and results, we conclude that Naringenin-LCNs may be employed as a potential therapy-based intervention to ameliorate airway inflammation and to inhibit the progression of lung cancer. PRACTICAL APPLICATIONS: Naringenin was encapsulated into liquid crystalline nanoparticles, thus, attributing to their sustained-release nature. In addition, Naringenin-loaded LCNs efficiently reduced the levels of pro-inflammatory markers, namely, IL-1ß, IL-6, TNF-α, and IL-8. In addition, the Naringenin-loaded LCNs also possess potent anticancer activity, when tested in the A549 cell line, as revealed by the inhibition of proliferation and migration of cells. They also attenuated colony formation and induced apoptosis in the A549 cells. The findings from our study could form the basis for future research that may be translated into an in vivo model to validate the possible therapeutic alternative for lung cancer using Naringenin-loaded LCNs. In addition, the applications of Naringenin-loaded LCNs as an intervention would be of great interest to biological, formulation and respiratory scientists and clinicians.


Flavanones , Nanoparticles , A549 Cells , Anti-Inflammatory Agents/pharmacology , Flavanones/pharmacology , Humans
11.
Nanomedicine (Lond) ; 15(30): 2955-2970, 2020 12.
Article En | MEDLINE | ID: mdl-33252322

Aim: In this study, curcumin was encapsulated in niosomes (Nio-Curc) to increase its effectiveness for the treatment of asthma. Materials & methods: The formulation underwent various physicochemical characterization experiments, an in vitro release study, molecular simulations and was evaluated for in vitro anti-inflammatory activity. Results: Results showed that Nio-Curc had a mean particle size of 284.93 ± 14.27 nm, zeta potential of -46.93 and encapsulation efficacy of 99.62%, which demonstrates optimized physicochemical characteristics. Curcumin release in vitro could be sustained for up to 24 h. Additionally, Nio-Curc effectively reduced mRNA transcript expression of pro-inflammatory markers; IL-6, IL-8, IL-1ß and TNF-α in immortalized human airway basal cell line (BCi-NS1.1). Conclusion: In this study, we have demonstrated that Nio-Curc mitigated the mRNA expression of pro-inflammatory markers in an in vitro study, which could be applied to treatment of asthma with further studies.


Asthma , Curcumin , Asthma/drug therapy , Curcumin/pharmacology , Humans , Liposomes , Particle Size , RNA, Messenger/genetics
12.
Curr Pharm Des ; 26(36): 4580-4590, 2020.
Article En | MEDLINE | ID: mdl-32520681

Many plant-based bioactive compounds have been serving as the origin of drugs since long ago and many of them have been proven to have medicinal value against various chronic diseases, including, cancer, arthritis, hepatic diseases, type-2 diabetes and cardiovascular diseases. However, their clinical applications have been limited due to their poor water solubility, stability, low bioavailability and extensive transformation due to the first-pass metabolism. The applications of nanocarriers have been proven to be able to improve the delivery of bioactive phytoconstituents, resulting in the enhancement of various pharmacokinetic properties and thereby increasing the therapeutic value of phytoconstituents. These biocompatible nanocarriers also exert low toxicity to healthy cells. This review focuses on the uses and applications of different types of nanocarriers to enhance the delivery of phytoconstituents for the treatment of various chronic diseases, along with comparisons related to bioavailability and therapeutic efficacy of nano phytoconstituents with native phytoconstituents.


Nanoparticles , Pharmaceutical Preparations , Biological Availability , Drug Carriers , Drug Delivery Systems , Solubility
13.
Article En | MEDLINE | ID: mdl-32359343

The application of medicinal plants has captured the interest of researchers in recent times due to their potent therapeutic properties and a better safety profile. The prominent role of herbal products in treating and preventing multiple diseases dates back to ancient history and most of the modern drugs today originated from their significant sources owing to their ability to control multiple targets via different signalling pathways. Among them, flavonoids consist of a large group of polyphenols, which are well known for their various therapeutic benefits. Rutin is considered one of the attractive phytochemicals and important flavonoids in the pharmaceutical industry due to its diverse pharmacological activities via various underlying molecular mechanisms. It is usually prescribed for various disease conditions such as varicosities, haemorrhoids and internal haemorrhage. In this review, we have discussed and highlighted the different molecular mechanisms attributed to the various pharmacological activities of rutin, such as antioxidant, anti-inflammatory, anticancer, anti-allergic and antidiabetic. This review will be beneficial to herbal, biological and molecular scientists in understanding the pharmacological relevance of rutin at the molecular level.


Anti-Allergic Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Hypoglycemic Agents/pharmacology , Rutin/pharmacology , Animals , Humans , Inflammation Mediators/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction
14.
J Environ Pathol Toxicol Oncol ; 38(3): 205-216, 2019.
Article En | MEDLINE | ID: mdl-31679308

Artemisia vulgaris is a traditional Chinese herb believed to have a wide range of healing properties; it is traditionally used to treat numerous health ailments. The plant is commonly called mugwort or riverside wormwood. The plant is edible, and in addition to its medicinal properties, it is also used as a culinary herb in Asian cooking in the form of a vegetable or in soup. The plant has garnered the attention of researchers in the past few decades, and several research studies have investigated its biological effects, including antioxidant, anti-inflammatory, anticancer, hypolipidemic, and antimicrobial properties. In this review, various studies on these biological effects are discussed along with the tests conducted, compounds involved, and proposed mechanisms of action. This review will be of interest to the researchers working in the field of herbal medicine, pharmacology, medical sciences, and immunology.


Artemisia/chemistry , Phytotherapy , Plant Extracts/pharmacology , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Hypolipidemic Agents/pharmacology , Plants, Medicinal/chemistry
15.
Ther Deliv ; 10(5): 281-293, 2019 05 01.
Article En | MEDLINE | ID: mdl-31094299

Aim: Our aim was to develop and characterize a nanogel formulation containing both glibenclamide and quercetin and to explore the permeation profile of this combination. Methods: Drug-loaded nanogel was prepared by ionic gelation. In addition, optimum encapsulation efficiencies of glibenclamide and quercetin were also obtained. The average nanoparticle size at optimum conditions was determined by Zetasizer. Results: The particle size of the nanogel was found to be 370.4 ± 4.78 nm with a polydispersity index of 0.528 ± 0.04, while the λ potential was positive in a range of 17.6 to 24.8 mV. The percentage cumulative drug release also showed favorable findings. Conclusion: The chitosan nanogel could be a potential alternative for delivering glibenclamide and quercetin through skin.


Chitosan/chemistry , Glyburide/metabolism , Nanogels/chemistry , Quercetin/metabolism , Drug Carriers/chemistry , Drug Compounding/methods , Drug Liberation , Glyburide/chemistry , Humans , Particle Size , Quercetin/chemistry , Skin/metabolism , Skin, Artificial
16.
Mol Biol Rep ; 46(1): 133-141, 2019 Feb.
Article En | MEDLINE | ID: mdl-30374769

Urease is a potent metalloenzyme with diverse applications. This paper describes the scale up and purification of an extracellular urease from Arthrobacter creatinolyticus MTCC 5604. The urease production was scaled-up in 3.7 L and 20 L fermentor. A maximum activity of 27 and 27.8 U/mL and a productivity of 0.90 and 0.99 U/mL/h were obtained at 30 h and 28 h in 3.7 and 20 L fermentor, respectively. Urease was purified to homogeneity with 49.85-fold purification by gel filtration and anion exchange chromatography with a yield of 36% and a specific activity of 1044.37 U/mg protein. The enzyme showed three protein bands with molecular mass of 72.6, 11.2 and 6.1 kDa on SDS-PAGE and ~ 270 kDa on native PAGE. The cytotoxic effect of urease was assessed in vitro using cancer cell lines (A549 and MG-63) and normal cell line (HEK 293). Urease showed its inhibitory effects on cancer cell lines through the generation of toxic ammonia, which in turn increased the pH of the surrounding medium. This increase in extracellular pH, enhanced the cytotoxic effect of weak base chemotherapeutic drugs, doxorubicin (50 µM) and vinblastine (100 µM) in the presence of urease (5 U/mL) and urea (0-4 mM) significantly.


Arthrobacter/enzymology , Urease/isolation & purification , Urease/pharmacology , A549 Cells/drug effects , Ammonia/metabolism , Arthrobacter/metabolism , Arthrobacter/physiology , Cell Line , Chromatography, Gel/methods , Electrophoresis, Polyacrylamide Gel/methods , HEK293 Cells , Humans , Hydrogen-Ion Concentration/drug effects , Molecular Weight , Urea/metabolism , Urease/physiology
17.
Biomed Pharmacother ; 109: 1785-1792, 2019 Jan.
Article En | MEDLINE | ID: mdl-30551432

In the recent years, much attention has been focused on identifying bioactive compounds from medicinal plants that could be employed in therapeutics, which is attributed to their potent pharmacological actions and better toxicological profile. One such example that has come into the light with considerable interest is the pentacyclic triterpenoid, celastrol, which has been found to provide substantial therapeutic properties in a variety of diseases. In an effort to further accelerate its potential to be utilized in clinical practice in the future; along with advancing technologies in the field of drug discovery and development, different researchers have been investigating on the various mechanisms and immunological targets of celastrol that underlie its broad spectrum of pharmacological properties. In this review, we have collated the various research findings related to the molecular modulators responsible for different pharmacological activities shown by celastrol. Our review will be of interest to the herbal, biological, molecular scientist and by providing a quick snapshot about celastrol giving a new direction in the area of herbal drug discovery and development.


Drug Discovery/methods , Tripterygium , Triterpenes/chemistry , Triterpenes/therapeutic use , Animals , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/therapeutic use , Drug Discovery/trends , Humans , Inflammation/drug therapy , Inflammation/metabolism , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Pentacyclic Triterpenes , Plants, Medicinal , Triterpenes/isolation & purification
18.
Colloids Surf B Biointerfaces ; 172: 51-59, 2018 Dec 01.
Article En | MEDLINE | ID: mdl-30134219

Curcumin a component of turmeric, which is derived from Curcuma longa is used as a colouring agent and as a dietary spice for centuries. Extensive studies have been done on the anti-inflammatory activity of curcumin along with its molecular mechanism involving different signalling pathways. However, the physicochemical and biological properties such as poor solubility and rapid metabolism of curcumin have led to low bioavailability and hence limits its application. Current therapies for asthma such as bronchodilators and inhaled corticosteroids (ICS) are aimed at controlling disease symptoms and prevent asthma exacerbation. However, this approach requires lifetime therapy and is associated with a constellation of side effects. This creates a clear unmet medical need and there is an urgent demand for new and more-effective treatments. The present study is aimed to formulate liposomes containing curcumin and evaluate for its anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation on BCi-NS1.1 cell line. Curcumin and salbutamol liposomes were formulated using lipid hydration method. The prepared liposomes were characterized in terms of particle size, zeta potential, encapsulation efficiency and in-vitro release profile. The liposomes were tested on BCI-NS1.1 cell line to evaluate its anti-inflammatory properties. The various pro-inflammatory markers studied were Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-1ß (IL-1ß) and Tumour Necrosis Factor-a (TNF-a). Additionally, molecular mechanics simulations were used to elucidate the positioning, energy minimization, and aqueous dispersion of the liposomal architecture involving lecithin and curcumin. The prepared curcumin formulation showed an average size and zeta potential of 271.3 ± 3.06 nm and -61.0 mV, respectively. The drug encapsulation efficiency of liposomal curcumin is 81.1%. Both curcumin-loaded liposomes formulation (1 µg/mL, 5 µg/mL) resulted in significant (p < 0.05) reduction in the level of pro-inflammatory marker expression such as IL-6, IL-8, IL-1ß and TNF-a compared to positive control group. Liposomal curcumin with the dose of 1 µg/mL reduced the inflammatory markers more effectively compared to that of 5 µg/mL. Liposomal curcumin could be a promising intervention for asthma therapy showing their efficacy in suppressing the important pro-inflammatory markers involved in the pathogenesis of asthma.


Asthma/drug therapy , Curcumin/therapeutic use , Asthma/pathology , Biomarkers/metabolism , Cell Line , Computer Simulation , Curcumin/chemistry , Drug Liberation , Humans , Inflammation/pathology , Liposomes , Models, Molecular , Particle Size , Spectroscopy, Fourier Transform Infrared , Static Electricity
20.
Future Med Chem ; 10(8): 839-844, 2018 04 01.
Article En | MEDLINE | ID: mdl-29620416

Several vesicular systems loaded with curcumin have found their way in the therapeutic applications of several diseases, primarily acting through their immunological pathways. Such systems use particles at a nanoscale range, bringing about their intended use through a range of complex mechanisms. Apart from delivering drug substances into target tissues, these vesicular systems also effectively overcome problems like insolubility and unequal drug distribution. Several mechanisms are explored lately by different workers, and interest over vesicular curcumin has been renewed in the past decade. This commentary discusses several immunological targets in which curcumin is employed in a vesicular form.


Analgesics/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Antineoplastic Agents/administration & dosage , Curcumin/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems , Humans , Liposomes/chemistry , Nanoparticles/chemistry , Solubility
...