Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124557, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38830332

RESUMEN

The photophysical properties of conformationally flexible (TPA-C) and partially rigidified (Cz-C) triarylamine acids were explored in solid as well as solution state and correlated with the structure. TPA-C and Cz-C exhibited moderate solid-state fluorescence (Φf = 6.2 % (TPA-C) and 5.6 % (Cz-C)) and self-reversible mechanofluorochromism. TPA-C produced fluorescent polymorphs (TPA-C-1 and TPA-C-2) with tunable fluorescence. TPA-C-1 showed unusual carboxylic acid intermolecular interactions whereas TPA-C-2 and Cz-C showed usual carboxylic acid dimer. TPA-C exhibited strong solvent polarity dependent tunable fluorescence (Φf = 0.01 to 0.11 compared to quinine sulphate standard) but Cz-C was non-emissive in the solution state. The dual emissive TPA-C showed highly sensitive fluorescence changes in organic solvents (CH3CN, THF, DMF, EtOH) when trace amount of water was added. In CH3CN, TPA-C showed weak fluorescence at 474 nm and addition of water (1 %) exhibited significant blue shift (λmax = 416 nm). The fluorescence intensity was gradually decreased with blue shifting in DMF, THF and EtOH with water addition. Importantly, TPA-C showed drastically different fluorescence in n-propanol (n-PA) and iso-propanol (IPA). TPA-C in n-PA showed fluorescence at 408 nm that was clearly red shifted to 438 nm with 0.1 % addition of IPA. The limit of detection (LOD) of water in CH3CN, DMF, THF and EtOH by TPA-C revealed 0.02, 0.7, 0.08 and 0.77 %, respectively. The LOD of IPA sensing in n-PA is 0.05 % and indicated the very efficient sensing and distinguishing propanol isomers. Thus, simple triphenylamine acid showed excellent water sensing and propanol isomers discrimination that could be attributed to the twisted intramolecular charge transfer (TICT) formation.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124303, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38636429

RESUMEN

A new deep blue emissive organic fluorophore (N-cyclohexyl-N-(cyclohexylcarbamoyl)-4-(diphenylamino)benzamide (NCDPB)) was designed and synthesized, which showed strong fluorescence both in solution and solid-state. Solid-state structural analysis of NCDPB revealed non-planar twisted molecular conformation with extended hydrogen bonding between the amide functionalities. The propeller shaped triphenylamine (TPA) and non-planar cyclohexyl unit prevented close π…π stacking and produced strong deep blue emission in the solid state (λmax = 400 nm, quantum yield (Φf) = 12.6 %). NCDPB also exhibited strong solvent polarity dependent tunable emission in solution (λmax = 402-462 nm, Φf = 1.15 (compared to quinine sulphate)). NCDPB showed reversible fluorescence switching between two fluorescence states upon mechanical crushing and heating/solvent exposure. Mechanical crushing caused red shifting of fluorescence from 400 to 447 nm and heating/solvent exposure reversed the fluorescence. Further, NCDPB also displayed off-on reversible/self-reversible fluorescence switching upon exposure to trifluoracetic acid (TFA) and NH3. The repeated fluorescence switching cycles indicated high reversibility without any significant change of fluorescence intensity. The drastically different fluorescence of NCDPB in CH3OH and EtOH was utilized to distinguish them and monitor CH3OH contamination in ethanol and benzene. It showed limit of detection (LOD) of methanol up to 0.25 % and 7 % in benzene and ethanol, respectively. The water sensitive fluorescence modulation of NCDPB in organic solvents was used to sensing water contamination in common organic solvents. Thus, integration of twisted TPA with H-bonding urea produced dual state emitting organic fluorophore with multi-responsive fluorescence switching and solvent sensing.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123838, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38181625

RESUMEN

Highly sensitive nature of excited state intramolecular proton transfer (ESIPT) functionality in organic fluorophores made them potential candidates for developing environmental sensors and bioimaging applications. Herein, we report the synthesis of V-shaped Dapsone based Schiff base ESIPT derivatives (1-3) and water sensitive wide fluorescence tuning from blue to red in DMSO. Solid-state structural analysis confirmed the V-shaped molecular structure with intramolecular H-bonding and substituent dependent molecular packing in the crystal lattice. 1 showed strong solid-state fluorescence (λmax = 554 nm, Φf = 21.2 %) whereas methoxy substitution (2 and 3) produced tunable but significantly reduced fluorescence (λmax = 547 (2) and 615 nm (3), Φf = 2.1 (2) and 6.5 % (3)). Interestingly, aggregation induced emission (AIE) studies in DMSO-water mixture revealed water sensitive fluorescence tuning. The trace amount of water (less than 1 %) in DMSO converted the non-emissive 1-3 into highly emissive state due to keto tautomer formation. Further increasing water percentage produced deprotonated state of 1-3 in DMSO and enhanced the fluorescence intensity with red shifting of emission peak. At higher water fraction, 1-3 in DMSO produced aggregates and red shifted the emission with reduction of fluorescence intensity. The concentration dependent fluorescence study revealed the very low detection limit of water in DMSO. The limit of detection (LOD) of 1, 2 and 3 were 0.14, 1.04 and 0.65 % of water in DMSO. Hence, simple Schiff bases of 1-3 showed water concentration dependent keto isomer, deprotonated and aggregated state tunable fluorescence in DMSO. Further, scanning electron microscopic (SEM) studies of 1-3 showed water concentration controlled self-assembly and tunable fluorescence.

4.
Dalton Trans ; 52(23): 8107-8113, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37248743

RESUMEN

Metal-organic frameworks (MOFs) with their tunable topology, functionality and coordination environment have been considered as potential materials for various applications including electrocatalysis. Herein, we have synthesised a water coordinated nickel based 2D metal-organic framework (Ni-MOF) and a coordination complex (Ni-C) and investigated their electrocatalytic OER activity. The Ni-MOF showed a 2D sheet structure with one water coordination whereas a four water molecule coordinated charged complex was formed in the Ni-C. Thermogravimetric analysis (TGA) confirmed their water coordination and good thermal stability. Interestingly, electrocatalytic OER studies showed strongly enhanced activity for the Ni-MOF and that it required a low overpotential (194 mV) to produce a geometric current density of 10 mA cm-2. The Ni-C required 225 mV to produce 10 mA cm-2. The post-catalytic analysis suggested that the Ni-MOF and Ni-C are converted to nickel hydroxides/oxyhydroxides during electrocatalysis and acted as the catalytic centre. The low Tafel slope and charge transfer resistance further supported the higher activity of Ni-MOF based nickel hydroxides/oxyhydroxides. Chronoamperometric studies revealed the excellent stability of the Ni-MOF based catalyst over 72 h. The present study revealed the potential of developing highly active electrocatalysts based on Ni-MOFs by optimizing the topology and coordination environment.

5.
Environ Res ; 231(Pt 1): 116046, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37150390

RESUMEN

Doped carbon dots have attracted great attention from researchers across disciplines because of their unique characteristics, such as their low toxicity, physiochemical stability, photostability, and outstanding biocompatibility. Nitrogen is one of the most commonly used elements for doping because of its sizeable atomic radius, strong electronegativity, abundance, and availability of electrons. This distinguishes them from other atoms and allows them to perform distinctive roles in various applications. Here, we have reviewed the most current breakthroughs in nitrogen-doped CDs (N-CDs) for fluorescent sensor applications in the last five years. The first section of the article addresses several synthetic and sustainable ways of making N-CDs. Next, we briefly reviewed the fluorescent features of N-CDs and their sensing mechanism. Furthermore, we have thoroughly reviewed their fluorescent sensor applications as sensors for cations, anions, small molecules, enzymes, antibiotics, pathogens, explosives, and pesticides. Finally, we have discussed the N-CDs' potential future as primary research and how that may be used. We hope that this study will contribute to a better understanding of the principles of N-CDs and the sensory applications that they can serve.


Asunto(s)
Puntos Cuánticos , Puntos Cuánticos/química , Carbono/química , Nitrógeno , Colorantes Fluorescentes/química
6.
RSC Adv ; 13(18): 12476-12482, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37091617

RESUMEN

Carbazole-based, π-conjugated donor-acceptor fluorophores were synthesized by integrating imidazole/thiazole units. Then, we investigated the impact of subtle structural changes on fluorescence properties. Carbazole integrated with imidazole (Cz-I) and carbazole integrated with thiazole (Cz-T) showed strong fluorescence in solution (quantum yield (Φ f) = 0.18 (Cz-I) and 0.14 (Cz-T) compared with the standard quinine sulfate) and solid-state (Φ f = 8.0% (Cz-I) and 14.6% (Cz-T)). Cz-I showed relatively more blue-shifted emission in solution compared with the solid-state (λ max = 417 nm (CH3CN) and 460 nm (solid)). Cz-T exhibited deep-blue emission in the solid-state compared with solution (λ max = 455 nm (CH3CN) and 418 nm (solid)). Interestingly, Cz-T exhibited a drastic change in fluorescence in organic solvents (CH3CN, THF, CH3OH, DMSO) with a low percentage (1%) of water. Cz-I showed reversible fluorescence switching between two fluorescence states upon exposure to trifluoracetic acid (TFA)/ammonia (NH3). In contrast, Cz-T displayed reversible/self-reversible off-on fluorescence switching upon exposure to TFA or NH3. Mechanofluorochromic studies of Cz-I showed a slight reduction in fluorescence intensity upon crushing and reversal to the initial state upon heating. Cz-T exhibited off-on reversible/self-reversible fluorescence switching upon crushing/heating. Computational studies indicated that thiazole integration improved the electron-withdrawing characteristics compared with imidazole and contributed to contrasting fluorescence responses. Thus, a simple change of nitrogen with sulfur produced contrasting self-assembly in the solid-state that led to different functional properties and stimuli-induced fluorescence switching.

7.
RSC Adv ; 13(18): 12065-12071, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37082374

RESUMEN

The use of metal-organic compounds as electrocatalysts for water splitting reactions has gained increased attention; however, a fundamental understanding of the structural requirement for effective catalytic activity is still limited. Herein, we synthesized water-coordinated mono and bimetallic copper complexes (CuPz-H2O·H2O, CuPz-H2O, CuBipy-H2O·H2O, and CuMorph-H2O) with varied intermetallic spacing (pyrazine/4,4'-bipyridine) and explored the structure-dependent oxygen evolution reaction (OER) activity in alkaline medium. Single crystal structural studies revealed water-coordinated monometallic complexes (CuMorph-H2O) and bimetallic complexes (CuPz-H2O·H2O, CuPz-H2O, CuBipy-H2O·H2O). Further, CuPz-H2O·H2O and CuBipy-H2O·H2O contained lattice water along with coordinated water. Interestingly, the bimetallic copper complex with lattice water and shorter interspacing between the metal centres (CuPz-H2O·H2O) showed strong OER activity and required an overpotential of 228 mV to produce a benchmark current density of 10 mA cm-2. Bimetallic copper complex (CuPz-H2O) without lattice water but the same intermetallic spacing and bimetallic complex with increased interspacing but with lattice water (CuBipy-H2O·H2O) exhibited relatively lower OER activity. CuPz-H2O and CuBipy-H2O·H2O required an overpotential of 236 and 256 mA cm-2, respectively. Monometallic CuMorph-H2O showed the lowest OER activity (overpotential 271 mV) compared to bimetallic complexes. The low Tafel slope and charge transfer resistance of CuPz-H2O·H2O facilitated faster charge transfer kinetics at the electrode surface and supported the enhanced OER activity. The chronoamperometric studies indicated good stability of the catalyst. Overall, the present structure-electrocatalytic activity studies of copper complexes might provide structural insight for designing new efficient electrocatalysts based on metal coordination compounds.

8.
Dalton Trans ; 52(12): 3877-3883, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36876484

RESUMEN

Fluorine and nitrogen codoped cobalt hydroxide-graphene oxide nanocomposites (N,F-Co(OH)2/GO) were synthesized by a simple hydrothermal method and demonstrated highly enhanced oxygen evolution activity in an alkaline medium. N,F-Co(OH)2/GO synthesized under optimized reaction conditions required an overpotential of 228 mV to produce the benchmark current density of 10 mA cm-2 (scan rate 1 mV s-1). In contrast, N,F-Co(OH)2 without GO and Co(OH)2/GO without fluorine required higher overpotentials (370 (N,F-Co(OH)2) and 325 mV (Co(OH)2/GO)) for producing the current density of 10 mA cm-2. The low Tafel slope (52.6 mV dec-1) and charge transfer resistance, and high electrochemical double layer capacitance of N,F-Co(OH)2/GO compared to N,F-Co(OH)2 indicate faster kinetics at the electrode-catalyst interface. The N,F-Co(OH)2/GO catalyst showed good stability over 30 h. High-resolution transmission electron microscope (HR-TEM) images showed good dispersion of polycrystalline Co(OH)2 nanoparticles in the GO matrix. X-ray photoelectron spectroscopic (XPS) analysis revealed the coexistence of Co2+/Co3+ and the doping of nitrogen and fluorine in N,F-Co(OH)2/GO. XPS further revealed the presence of F in its ionic state and being covalently attached to GO. The integration of highly electronegative F with GO stabilizes the Co2+ active centre along with improving the charge transfer and adsorption process that contributes to improved OER. Thus, the present work reports a facile method for preparing F-doped GO-Co(OH)2 electrocatalysts with enhanced OER activity under alkaline conditions.

9.
Dalton Trans ; 52(14): 4606-4615, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36929846

RESUMEN

Highly efficient and stable Earth abundant transition metal electrocatalysts are in great demand for the oxygen evolution reaction (OER), a bottleneck process involved in the water splitting reaction and metal-air batteries. Herein, we have demonstrated a single step direct fabrication of cobalt hydroxide (Co(OH)2) nanowires doped with vanadium(V) in a less stable +4 oxidation state and fluoride (F) ions (V-Co(OH)2) on a carbon cloth electrode that showed highly enhanced OER activity under alkaline conditions. V-Co(OH)2 nanowires synthesized under the optimized conditions produced excellent OER activity with an ultralow overpotential of 136 mV at 10 mA cm-2 (scan rate 1 mV s-1), a small Tafel slope (51.6 mV dec-1) and good stability over 72 h. To the best of our knowledge, this is the lowest overpotential reported for cobalt-based electrocatalysts to achieve a geometric current density of 10 mA cm-2. The controlled synthesis and HR-TEM studies revealed the formation of hybrid nanostructures (nanowires along with spherical assembly of nanoparticles) and codoping of V and F ions played an important role in enhancing the OER activity. The detailed chemical composition and oxidation state analysis by X-ray photoelectron spectroscopy (XPS) confirmed the doping of V4+ and ionic F in V-Co(OH)2 with mixed valence states of Co2+/Co3+ and a higher Co2+ ratio. The outstanding OER activity of V-Co(OH)2 is attributed to the formation of a spherical assembly of nanoparticles with nanowires, which provided a high number of catalytically active sites with enhanced charge transport, and doping of higher valence V4+ and strongly electronegative F in V-Co(OH)2 with a higher ratio of Co2+/Co3+ promoted OOH* intermediate generation and significantly boosted the OER activity. Overall, the present work highlights the possibility of achieving highly active Earth abundant OER electrocatalysts by controlling the mixed oxidation state of Co with a judicious choice of dopants along with maintaining optimal nanostructure morphologies.

10.
ACS Omega ; 8(1): 391-409, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643495

RESUMEN

Over the centuries, cancer has been considered one of the significant health threats. It holds the position in the list of deadliest diseases over the globe. In women, breast cancer is the most common among many cancers and is the second most common cancer all over the world, while lung cancer is the first. Cyclin-dependent kinase 8 (CDK8) has been identified as a critical oncogenic driver that is found in breast cancer and associated with tumor progression. Flavonoids were virtually screened against CDK8 using molecular docking, drug-likeness, ADMET prediction, and a molecular dynamics (MD) simulation approach to determine the potential flavonoid structure against CDK8. The results indicated that ZINC000005854718 showed the highest negative binding affinity of -10.7 kcal/mol with the targeted protein and passed all the drug-likeness parameters. Performed molecular dynamics simulation showed that docked complex systems have good conformational stability over 100 ns in different temperatures (298, 300, 305, 310, and 320 K). The comparison between calculated binding free energy via MM/PB(GB)SA methods and binding affinity calculated via molecular docking suggested tight binding of ZINC000005854718 with targeted protein. The results concluded that ZINC000005854718 has drug-like properties with tight and stable binding with the targeted protein.

11.
J Biomol Struct Dyn ; 41(1): 280-297, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34809523

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes COVID-19 disease has been exponentially increasing throughout the world. The mortality rate is increasing gradually as effective treatment is unavailable to date. In silico based screening for novel testable hypotheses on SARS-CoV-2 Mpro protein to discover the potential lead drug candidate is an emerging area along with the discovery of a vaccine. Administration of NO-releasing agents, NO inducers or the NO gas itself may be useful as therapeutics in the treatment of SARS-CoV-2. In the present study, a 3D structure of SARS-CoV-2 Mpro protein was used for the rational setting of inhibitors to the binding pocket of enzyme which proposed that phenyl furoxan derivative gets efficiently dock in the target pocket. Molecular docking and molecular dynamics simulations helped to investigate possible effective inhibitor candidates bound to SARS-CoV-2 Mpro substrate binding pocket. Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations revealed energetic contributions of active site residues of Mpro in binding with most stable proposed NO donor heterocyclic vasodilator inhibitor molecules. Furthermore, principal component analysis (PCA) showed that the NO donor heterocyclic inhibitor molecules 14, 16, 18 and 19 was strongly bound to catalytic core of SARS-CoV-2 Mpro protein, limiting its movement to form stable complex as like control. Thus, overall in silico investigations revealed that 5-oxopiperazine-2-carboxylic acid coupled furoxan derivatives was found to be key pharmacophore in drug design for the treatment of SARS-CoV-2, a global pandemic disease with a dual mechanism of action as NO donor and a worthwhile ligand to act as SARS-CoV-2 Mpro protein inhibitor.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vasodilatadores , Simulación del Acoplamiento Molecular , Ácidos Carboxílicos , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología
12.
Curr Pharm Biotechnol ; 24(9): 1122-1148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36154593

RESUMEN

COVID-19 rapidly evolved as a pandemic, killing and hospitalising millions of people, and creating unprecedented hurdles for communities and health care systems worldwide. The rapidly evolving pandemic prompted the head of the World Health Organisation to deliver a critical message: "test, test, test." The response from the diagnostic industry and researchers worldwide was overwhelming, resulting in more than a thousand commercial tests being available worldwide. Several sampling approaches and diagnostic techniques have been employed from the early stages of the pandemic, such as SARS-CoV-2 detection by targeting the viral RNA or protein indirectly via antibody testing, biochemical estimation, and various imaging techniques, and many are still in the various stages of development and yet to be marketed. Accurate testing techniques and appropriate sampling are the need of the hour to manage, diagnose and treat the pandemic, especially in the current crisis where SARS-CoV-2 undergoes constant mutation, evolving into various strains, which are pretty challenging. The article discusses various testing techniques as well as screening methods for detection, treatment, and management of COVID-19 transmissions, such as NAAT, PCR, isothermal detection including RT-LAMP, RPA, NASBA, RCA, SDA, NEAR, and TMA, CRISPR strategy, nanotechnology approach, metagenomic profiling, point of care tests, virus neutralization test, ELISA, biomarker estimation, utilization of imaging techniques such as CT, ultrasonography, brain MRI in COVID-19 complications, and other novel strategies including microarray methods, microfluidic methods and artificial intelligence with an emphasis on advancements in the testing strategies for the diagnosis, management, and prevention of COVID-19.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Prueba de COVID-19 , Inteligencia Artificial , Técnicas de Laboratorio Clínico/métodos , Sensibilidad y Especificidad
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121989, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36323083

RESUMEN

Introducing methoxy substituent into triphenylamine-acetophenone based donor-π-acceptor fluorophore, 3-(4-(diphenylamino)phenyl)-1-phenylprop-2-en-1-one (1), produced strong solvatofluorochromism including white light emission, fluorescent polymorphs and mechano-responsive fluorescence switching. The unsubstituted and methoxy substituted compounds displayed strong solvent polarity mediated tunable emission in the solution. Interestingly, 3-(4-(diphenylamino)phenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (2) and 3-(4-(diphenylamino)-2-methoxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (3) showed single molecule white light emission in DMSO and ethanol, respectively. 1-3 exhibited strong green/yellow fluorescence in the solid-state (Quantum yield (Φf) = 10 to 23%). 2 produced fluorescent polymorphs (green (2-G) and yellow (2-Y). Single crystal structural analysis revealed that donor and acceptor phenyl units adopted coplanar conformation in 2-G and 3 whereas twisted molecular conformation in 1 and 2-Y. Further, 2-G exhibited π…π interactions facilitated isolated dimers whereas 2-Y showed well separated molecules in the crystal lattice. Aggregation induced emission (AIE) studies showed morphological transformation induced fluorescence tuning for 2. The intramolecular charge transfer (ICT) from TPA to acetophenone was confirmed by computational studies. Mechanofluorochromic (MFC) studies of 1 showed only slight reduction of intensity without modulating fluorescence wavelength significantly but 2 and 3 exhibited visible emissive colour change from yellow to green and vice versa by crushing and heating. Both 2 and 3 also exhibited self-reversible fluorescence switching that was confirmed by PXRD pattern. Thus, methoxy group introduction resulted in obtaining white light emitting fluorescence molecules in the solution state and self-reversible fluorescence switching materials.


Asunto(s)
Acetofenonas , Colorantes Fluorescentes , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes/química , Solventes/química , Conformación Molecular
14.
Environ Sci Pollut Res Int ; 29(57): 86825-86839, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35796927

RESUMEN

Facile solvothermal techniques were used to manufacture ZnS/1T-2H MoS2 nanocomposite (ZMS) with outstanding adsorption-photocatalytic activity. The formed catalyst was characterized by different tools; XRD, HR-TEM, EDX, FTIR, Raman, N2adsorprion/desorption, Zeta potential, PL,and XPS. The analysis provided the formation on mixed phase of metallic 1Tand 2H phases. ZMS has a high porosity and large specific surface area, and it has a high synergistic adsorption-photocatalytic degradation effect for MB, with a removal efficiency of ≈100% in 45 minutes under visible light irradiation. The extraordinary MB removal efficiency of ZMS was attributed not only to the high specific surface area (49.15 m2/g) and precious reactive sites generated by ZMS, but also to the formation of 1T and 2H phases if compared to pristine MoS2 (MS). The best adsorption affinity was induced by the existance of 1T phase. The remarkably enhanced photocatalytic activity of ZMS nanocomposite can be ascribed to the 2D heterostructure which enhances the adsorption for pollutants, provides abundant reaction active sites, extends the photoresponse to visible light region.

15.
Mikrochim Acta ; 189(5): 200, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35474402

RESUMEN

Three-dimensional (3D) cobalt molybdate (CoMoO4) hierarchical nanoflake arrays on pencil graphite electrode (PGE) (CoMoO4/PGE) are actualized via one-pot hydrothermal technique. The morphological features comprehend that the CoMoO4 nanoflake arrays expose the 3D, open, porous, and interconnected network architectures on PGE. The formation and growth mechanisms of CoMoO4 nanostructures on PGE are supported with different structural and morphological characterizations. The constructed CoMoO4/PGE is operated as an electrocatalytic probe in enzyme-less electrochemical glucose sensor (ELEGS), confronting the impairments of cost- and time-obsessed conventional electrode polishing and catalyst amendment progressions and obliged the employment of a non-conducting binder. The wide-opened interior and exterior architectures of CoMoO4 nanoflake arrays escalate the glucose utilization efficacy, whilst the intertwined nanoflakes and graphitic carbon layers, respectively, of CoMoO4 and PGE articulate the continual electron mobility and catalytically active channels of CoMoO4/PGE. It jointly escalates the ELEGS concerts of CoMoO4/PGE including high sensitivity (1613 µA mM-1 cm-2), wide linear glucose range (0.0003-10 mM), and low detection limit (0.12 µM) at a working potential of 0.65 V (vs. Ag/AgCl) together with the good recovery in human serum. Thus, the fabricated CoMoO4/PGE extends exclusive virtues of modest electrode production, virtuous affinity, swift response, and excellent sensitivity and selectivity, exposing innovative prospects to reconnoitring the economically viable ELEGSs with binder-free, affordable cost, and expansible 3D electrocatalytic probes.


Asunto(s)
Grafito , Humanos , Cobalto , Electrodos , Glucosa , Grafito/química
16.
Bioinorg Chem Appl ; 2022: 8635054, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35340421

RESUMEN

COVID-19 is more virulent and challenging to human life. In India, the Ministry of AYUSH recommended some strategies through Siddha, homeopathy, and other methods to effectively manage COVID-19 (Guidelines for AYUSH Clinical Studies in COVID-19, 2020). Kabasura Kudineer and homeopathy medicines are in use for the prevention and treatment of COVID-19 infection; however, the mechanism of action is less explored. This study aims to understand the antagonist activity of natural compounds found in Kabasura Kudineer and homeopathy medicines against the SARS-CoV-2 using computational methods. Potential compounds were screened against NSP-12, NSP-13, NSP-14, NSP-15, main protease, and spike proteins. Structure-based virtual screening results shows that, out of 14,682 Kabasura Kudineer compounds, the 250395, 129677029, 44259583, 44259584, and 88583189 compounds and, out of 3,112 homeopathy compounds, the 3802778, 320361, 5315832, 14590080, and 74029795 compounds have good scoring function against the SARS-CoV-2 structural and nonstructural proteins. As a result of docking, homeopathy compounds have a docking score ranging from -5.636 to 13.631 kcal/mol, while Kabasura Kudineer compounds have a docking score varying from -8.290 to -13.759 kcal/mol. It has been found that the selected compounds bind well to the active site of SARS-CoV-2 proteins and form hydrogen bonds. The molecular dynamics simulation study shows that the selected compounds have maintained stable conformation in the simulation period and interact with the target. This study supports the antagonist activity of natural compounds from Kabasura Kudineer and homeopathy against SARS-CoV-2's structural and nonstructural proteins.

17.
Environ Sci Pollut Res Int ; 29(26): 38657-38672, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35258738

RESUMEN

COVID-19 is a serious respiratory infection caused by a beta-coronavirus that is closely linked to SARS. Hypoxemia is a symptom of infection, which is accompanied by acute respiratory distress syndrome (ARDS). Augmenting supplementary oxygen may not always improve oxygen saturation; reversing hypoxemia in COVID-19 necessitates sophisticated means to promote oxygen transfer from alveoli to blood. Inhaled nitric oxide (iNO) has been shown to inhibit the multiplication of the respiratory coronavirus, a property that distinguishes it from other vasodilators. These findings imply that NO may have a crucial role in the therapy of COVID-19, indicating research into optimal methods to restore pulmonary physiology. According to clinical and experimental data, NO is a selective vasodilator proven to restore oxygenation by helping to normalize shunts and ventilation/perfusion mismatches. This study examines the role of NO in COVID-19 in terms of its specific physiological and biochemical properties, as well as the possibility of using inhaled NO as a standard therapy. We have also discussed how NO could be used to prevent and cure COVID-19, in addition to the limitations of NO.


Asunto(s)
COVID-19 , Administración por Inhalación , Humanos , Hipoxia/tratamiento farmacológico , Óxido Nítrico , Oxígeno
18.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35054912

RESUMEN

At present, the potential role of the AgNPs/endo-fullerene molecule metal nano-composite has been evaluated over the biosystems in-vitro. The intra-atomic configuration of the fullerene molecule (C60) has been studied in-vitro for the anti-proliferative activity of human breast adenocarcinoma (MDA-MB-231) cell lines and antimicrobial activity against a few human pathogens that have been augmented with the pristine surface plasmonic electrons and antibiotic activity of AgNPs. Furthermore, FTIR revealed the basic vibrational signatures at ~3300 cm-1, 1023 cm-1, 1400 cm-1 for O-H, C-O, and C-H groups, respectively, for the carbon and oxygen atoms of the C60 molecule. NMR studies exhibited the different footprints and magnetic moments at ~7.285 ppm, explaining the unique underlying electrochemical attributes of the fullerene molecule. Such unique electronic and physico-chemical properties of the caged carbon structure raise hope for applications into the drug delivery domain. The in-vitro dose-dependent application of C60 elicits a toxic response against both the breast adenocarcinoma cell lines and pathogenic microbes. That enables the use of AgNPs decorated C60 endo fullerene molecules to design an effective anti-cancerous drug delivery and antimicrobial agent in the future, bringing a revolutionary change in the perspective of a treatment regime.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Fulerenos/química , Nanopartículas del Metal/química , Plata/química , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Nanopartículas del Metal/ultraestructura , Nanocompuestos/química , Análisis Espectral
19.
Int J Biol Macromol ; 202: 269-277, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35033529

RESUMEN

Environmentally-friendly, cyanidin(Cy)-based anthocyanin isolated from red-cabbage served as a spectroscopic probe imprinted onto chitosan nanoparticles (CsNPs), which were in turn integrated onto cellulose paper strip (CPS) as a host matrix to develop a metallochromic solid state sensor for real-time selective determination of ferric ions in an aqueous medium. The ferric transition metal ions in aqueous environments were detected using a novel, simple, portable, fast responsive, low-cost, real-time, environmentally safe, reversible and colorimetric sensor based on chitosan nanoparticles as a hosting biopolymer and cyanidin phenol chromophore as a biomolecular probe. In order to use the cyanidin biomolecule as a pH indicator and chelating agent, it was purified from red-cabbage and added into the CsNPs biosensor film. The colorimetric shift increased in direct proportion to the ferric ion concentration. As a result, the current research that was both qualitative and quantitative was carried out. While the Cy-CsNPs-CPS sensor showed high selectivity for ferric ions, no color change was detected for other metal cations. It was discovered that the detection process occurred as a result of a coordination complex formed between the active sites of phenolic cyanidin and Fe(III) ions.


Asunto(s)
Brassica , Quitosano , Nanopartículas , Antocianinas/química , Brassica/química , Celulosa/química , Compuestos Férricos , Extractos Vegetales
20.
J Biomol Struct Dyn ; 40(21): 11095-11110, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34308790

RESUMEN

A sudden increase in life-threatening COVID-19 infections around the world inflicts global crisis and emotional trauma. In current study two druggable targets, namely SARS-COV-2 Mpro and CCR-5 were selected due to their significant nature in the viral life cycle and cytokine molecular storm respectively. The systematic drug repurposing strategy has been utilized to recognize inhibitory mechanism through extensive in silico investigation of novel Maraviroc analogues as promising inhibitors against SARS-CoV-2 Mpro and CCR-5. The dual inhibition specificity approach implemented in present study using molecular docking, molecular dynamics (MD), principal component analysis (PCA), free energy landscape (FEL) and MM/PBSA binding energy studies. The proposed Maraviroc analogues obtained from in silico investigation could be easily synthesized and constructive in developing significant drug against COVID-19 pandemic, with essentiality of their in vivo/in vitro evaluation to affirm the conclusions of this study. This will further fortify the concept of single drug targeting dual inhibition mechanism for treatment of COVID-19 infection and complications.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Pandemias , Maraviroc/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/química , Antivirales/farmacología , Antivirales/química , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...