Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38727400

RESUMEN

Heavy metal poisoning has a life-threatening impact on the human body to aquatic ecosystems. This necessitates designing a convenient green methodology for the fabrication of an electrochemical sensor that can detect heavy metal ions efficiently. In this study, boron (B) and nitrogen (N) co-doped laser-induced porous graphene (LIGBN) nanostructured electrodes were fabricated using a direct laser writing technique. The fabricated electrodes were utilised for the individual and simultaneous electrochemical detection of lead (Pb2+) and cadmium (Cd2+) ions using a square wave voltammetry technique (SWV). The synergistic effect of B and N co-doping results in an improved sensing performance of the electrode with better sensitivity of 0.725 µA/µM for Pb2+ and 0.661 µA/µM for Cd2+ ions, respectively. Moreover, the sensing electrode shows a low limit of detection of 0.21 µM and 0.25 µM for Pb2+ and Cd2+ ions, with wide linear ranges from 8.0 to 80 µM for Pb2+ and Cd2+ ions and high linearity of R2 = 0.99 in case of simultaneous detection. This rapid and facile method of fabricating heteroatom-doped porous graphene opens a new avenue in electrochemical sensing studies to detect various hazardous metal ions.

2.
Micromachines (Basel) ; 14(7)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37512788

RESUMEN

Recently MXenes has gained immense attention as a new and exciting class of two-dimensional material. Due to their unique layered microstructure, the presence of various functional groups at the surface, earth abundance, and attractive electrical, optical, and thermal properties, MXenes are considered promising candidates for various applications such as energy, environmental, and biomedical. The ease of dispersibility and metallic conductivity of MXene render them promising candidates for use as fillers in polymer nanocomposites. MXene-polymer nanocomposites simultaneously benefit from the attractive properties of MXenes and the flexibility and facile processability of polymers. However, the potentiality of MXene to modify the electrospun nanofibers has been less studied. Understanding the interactions between polymeric nanofibers and MXenes is important to widen their role in biomedical applications. This review explores diverse methods of MXene synthesis, discusses our current knowledge of the various biological characteristics of MXene, and the synthesis of MXene incorporated polymeric nanofibers and their utilization in biomedical applications. The information discussed in this review serves to guide the future development and application of MXene-polymer nanofibers in biomedical fields.

3.
Nanomaterials (Basel) ; 13(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37299626

RESUMEN

Solar energy is regarded as the finest clean and green energy generation method to replace fossil fuel-based energy and repair environmental harm. The more expensive manufacturing processes and procedures required to extract the silicon utilized in silicon solar cells may limit their production and general use. To overcome the barriers of silicon, a new energy-harvesting solar cell called perovskite has been gaining widespread attention around the world. The perovskites are scalable, flexible, cost-efficient, environmentally benign, and easy to fabricate. Through this review, readers may obtain an idea about the different generations of solar cells and their comparative advantages and disadvantages, working mechanisms, energy alignment of the various materials, and stability achieved by applying variable temperature, passivation, and deposition methods. Furthermore, it also provides information on novel materials such as carbonaceous, polymeric, and nanomaterials that have been employed in perovskite solar in terms of the different ratios of doping and composite and their optical, electrical, plasmonic, morphological, and crystallinity properties in terms of comparative solar parameters. In addition, information on current trends and future commercialization possibilities of perovskite solar have been briefly discussed based on reported data by other researchers.

4.
Pharmaceutics ; 15(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37242589

RESUMEN

Dural defects are a common problem in neurosurgical procedures and should be repaired to avoid complications such as cerebrospinal fluid leakage, brain swelling, epilepsy, intracranial infection, and so on. Various types of dural substitutes have been prepared and used for the treatment of dural defects. In recent years, electrospun nanofibers have been applied for various biomedical applications, including dural regeneration, due to their interesting properties such as a large surface area to volume ratio, porosity, superior mechanical properties, ease of surface modification, and, most importantly, similarity with the extracellular matrix (ECM). Despite continuous efforts, the development of suitable dura mater substrates has had limited success. This review summarizes the investigation and development of electrospun nanofibers with particular emphasis on dura mater regeneration. The objective of this mini-review article is to give readers a quick overview of the recent advances in electrospinning for dura mater repair.

5.
Nanomaterials (Basel) ; 12(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364587

RESUMEN

Reusing or recycling waste into new useful materials is essential for environmental protection. Herein, we used discarded polystyrene (PS) and fly-ash (FA) particles and a fabricated fly-ash incorporated polystyrene fiber (FA/PS fiber) composite. The electrospinning process produced continuous PS fibers with a good distribution of FA particles. The prepared nanofibers were characterized by state-of-the-art techniques. The performances of the composite nanofibers were tested for fire-retardant applications. We observed that the incorporation of FA particles into the PS fibers led to an improvement in the performance of the composite as compared to the pristine PS fibers. This study showed an important strategy in using waste materials to produce functional nanofibers through an economical procedure. We believe that the strategy presented in this paper can be extended to other waste materials for obtaining nanofiber membranes for various environmental applications.

6.
Polymers (Basel) ; 14(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36015690

RESUMEN

MXenes are 2D ceramic materials, especially carbides, nitrides, and carbonitrides derived from their parent 'MAX' phases by the etching out of 'A' and are famous due to their conducting, hydrophilic, biocompatible, and tunable properties. However, they are hardly stable in the outer environment, have low biodegradability, and have difficulty in drug release, etc., which are overcome by MXene/Polymer nanocomposites. The MXenes terminations on MXene transferred to the polymer after composite formation makes it more functional. With this, there is an increment in photothermal conversion efficiency for cancer therapy, higher antibacterial activity, biosensors, selectivity, bone regeneration, etc. The hydrophilic surfaces become conducting in the metallic range after the composite formation. MXenes can effectively be mixed with other materials like ceramics, metals, and polymers in the form of nanocomposites to get improved properties suitable for advanced applications. In this paper, we review different properties like electrical and mechanical, including capacitances, dielectric losses, etc., of nanocomposites more than those like Ti3C2Tx/polymer, Ti3C2/UHMWPE, MXene/PVA-KOH, Ti3C2Tx/PVA, etc. along with their applications mainly in energy storing and biomedical fields. Further, we have tried to enlist the MXene-based nanocomposites and compare them with conducting polymers and other nanocomposites. The performance under the NIR absorption seems more effective. The MXene-based nanocomposites are more significant in most cases than other nanocomposites for the antimicrobial agent, anticancer activity, drug delivery, bio-imaging, biosensors, micro-supercapacitors, etc. The limitations of the nanocomposites, along with possible solutions, are mentioned.

7.
J Colloid Interface Sci ; 610: 863-878, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34863553

RESUMEN

Tailoring hierarchical hybrid core-shell electrodes with impartial microstructural features and excellent electroactive constituents is crucial for the design of high-performance supercapacitors (SCs). Herein, for the first time, we fabricate uniformly aligned porous ZnFe2O4 (ZFO) nanosheet arrays onto reduced graphene oxide-garnished conductive Ni foam (rGO-NF) substrates and subsequently embellish the first layer of ZFO nanosheets with morphology-controlled secondary NiMoO4 nanosheets to achieve a hierarchical 3D core-shell structure of ZnFe2O4@NiMoO4 nanosheet arrays (NSAs) onto rGO-NF for SC applications. Improving the synergistic effect of the core-shell nanoarchitecture with a conductive rGO-NF substrate, the hierarchical 3D ZFO@NMO NSAs tend to have superb electronic conductivity, tailoribility, effective nanoporous channels, and appropriate roadways for rapid ion/electron transfer, which are required for rapid reversible redox reactions, thus reflecting the excellent electrochemical features, including the excellent specific capacitance, good rate performance, and prolonged cyclic performance of the three electrode assemblies for SCs. An asymmetric supercapacitor (ASC) device composed of ZFO@NMO NSAs@rGO-NF as the cathode and MOF-derived hollow porous carbon (MDHPC) as the anode exhibits a high energy density of 58.6 Wh kg-1 at a power density of 799 W kg-1 with prolonged cyclic durability (89.6 % after 7000 cycles), thus indicating its potential applicability towards advanced hybrid SCs.

8.
Nanomaterials (Basel) ; 13(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36616060

RESUMEN

Silicon carbide (SiC) is a very promising carbide material with various applications such as electrochemical supercapacitors, photocatalysis, microwave absorption, field-effect transistors, and sensors. Due to its enticing advantages of high thermal stability, outstanding chemical stability, high thermal conductivity, and excellent mechanical behavior, it is used as a potential candidate in various fields such as supercapacitors, water-splitting, photocatalysis, biomedical, sensors, and so on. This review mainly describes the various synthesis techniques of nanostructured SiC (0D, 1D, 2D, and 3D) and its properties. Thereafter, the ongoing research trends in electrochemical supercapacitor electrodes are fully excavated. Finally, the outlook of future research directions, key obstacles, and possible solutions are emphasized.

9.
Nanomaterials (Basel) ; 11(11)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34835907

RESUMEN

Global warming and water/air contamination caused by human activities are major challenges in environmental pollution and climate change. The improper discharge of a large amount of agro-forest byproduct is accelerating these issues mainly in developing countries. The burning of agricultural byproducts causes global warming, whereas their improper waste management causes water/air pollution. The conversion of these waste materials into effective smart materials can be considered as a promising strategy in waste management and environmental remediation. Over the past decades, activated carbons (ACs) have been prepared from various agricultural wastes and extensively used as adsorbents. The adsorption capacity of ACs is linked to a well-developed porous structure, large specific surface area, and rich surface functional moieties. Activated carbon needs to increase their adsorption capacity, especially for specific adsorbates, making them suitable for specific applications, and this is possible by surface modifications of their surface chemistry. The modifications of surface chemistry involve the introduction of surface functional groups which can be carried out by various methods such as acid treatment, alkaline treatment, impregnation, ozone treatment, plasma treatment, and so on. Depending on the treatment methods, surface modification mainly affects surface chemistry. In this review, we summarized several modification methods for agricultural-waste-based ACs. In addition, the applications of AC for the adsorption of various pollutants are highlighted.

10.
Nanoscale ; 13(46): 19537-19548, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34806747

RESUMEN

Commercial supercapacitors need a high mass loading of more than 10 mg cm-2 and a high working potential window to resolve the low energy density concern. Herein, we have demonstrated a thick, ultrahigh mass loading (35 mg cm-2) and wide cell voltage electrochemically reduced layer-by-layer three-dimensional carbon nanofiber network (LBL 3D-CNF) electrode via electrospinning, sodium borohydride treatment, carbonization, and electro-reduction techniques. During the electro-reduction technique, Na+ is adsorbed onto the various defect sites of LBL 3D-CNFs, which properly inhibits the formation of the intermediate HER (hydrogen evolution reaction) product, leading to a wide cell voltage, whereas the LBL 3D-CNF network evokes an opportunity for storing a greater number of charges, resulting in excellent electrochemical performances. A symmetric supercapacitor with a reproducible and stable cell voltage of 2.0 V is constructed and demonstrated. The as-constructed device can deliver an areal energy output of 1922 µW h cm-2 at a power density of 3979 W kg-1 equal to a gravimetric energy density of 27 W h kg-1, and an outstanding cyclic durability of 97.4% after 20 000 GCD cycles. These record-breaking performances would make our device one of the most promising candidates from an industrial point of view.

11.
Int J Pharm ; 610: 121228, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34715260

RESUMEN

In this study, we engineered an electrospun keratin/polyvinyl alcohol (PVA) nanofiber membrane with a three-dimensional (3D) fiber network. Both keratin and PVA are known as biocompatible materials, and the 3D assembly of these two led to a transparent membrane with superior mechanical properties. The as-prepared three-dimensionally assembled keratin/PVA nanofiber (3D keratin/PVA NFs) membrane was characterized by state-of-the-art techniques and used as a corneal implant in rabbit eyes. The transparency, mechanical properties, and biocompatibility of the electrospun keratin/PVA NFs were highly enhanced after 3D modification which is mainly attributed to its unique three-dimensional morphology. The performance of 3D keratin/PVA NFs membrane was compared with horse amniotic membrane (AM), and the results obtained from the clinical and histological evaluations showed that it could be considered as an alternative material to the AM. Furthermore, this study provides an emerging approach for converting a two-dimensional electrospun nanofiber membrane to three-dimensional fiber networks that resemble the structure of the extracellular matrix (ECM).


Asunto(s)
Nanofibras , Alcohol Polivinílico , Animales , Materiales Biocompatibles , Caballos , Queratinas , Conejos , Andamios del Tejido
12.
Molecules ; 26(16)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34443537

RESUMEN

Air is the most crucial and life-supporting input from nature to the living beings of the planet. The composition and quality of air significantly affects human health, either directly or indirectly. The presence of some industrially released gases, small particles of anthropogenic origin, and the deviation from the normal composition of air from the natural condition causes air pollution. Volatile organic compounds (VOCs) are common contaminants found as indoor as well as outdoor pollutants. Such pollutants represent acute or chronic health hazards to the human physiological system. In the environment, such polluted gases may cause chemical or photochemical smog, leading to detrimental effects such as acid rain, global warming, and environmental pollution through different routes. Ultimately, this will propagate into the food web and affect the ecosystem. In this context, the efficient removal of volatile organic compounds (VOCs) from the environment remains a major threat globally, yet satisfactory strategies and auxiliary materials are far from being in place. Metal-organic frameworks (MOFs) are known as an advanced class of porous coordination polymers, a smart material constructed from the covalently bonded and highly ordered arrangements of metal nodes and polyfunctional organic linkers with an organic-inorganic hybrid nature, high porosities and surface areas, abundant metal/organic species, large pore volumes, and elegant tunability of structures and compositions, making them ideal candidates for the removal of unwanted VOCs from air. This review summarizes the fundamentals of MOFs and VOCs with recent research progress on MOF-derived nanostructures/porous materials and their composites for the efficient removal of VOCs in the air, the remaining challenges, and some prospective for future efforts.

13.
Molecules ; 26(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071651

RESUMEN

This paper numerically explores the possibility of ultrathin layering and high efficiency of graphene as a back surface field (BSF) based on a CdTe solar cell by Personal computer one-dimensional (PC1D) simulation. CdTe solar cells have been characterized and studied by varying the carrier lifetime, doping concentration, thickness, and bandgap of the graphene layer. With simulation results, the highest short-circuit current (Isc = 2.09 A), power conversion efficiency (h = 15%), and quantum efficiency (QE ~ 85%) were achieved at a carrier lifetime of 1 × 103 ms and a doping concentration of 1 × 1017 cm-3 of graphene as a BSF layer-based CdTe solar cell. The thickness of the graphene BSF layer (1 mm) was proven the ultrathin, optimal, and obtainable for the fabrication of high-performance CdTe solar cells, confirming the suitability of graphene material as a BSF. This simulation confirmed that a CdTe solar cell with the proposed graphene as the BSF layer might be highly efficient with optimized parameters for fabrication.

14.
J Colloid Interface Sci ; 602: 573-589, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34146947

RESUMEN

The rigorous fabrication of electrode materials using upper-ranked porous precursor especially metal organic frameworks (MOFs) are challenging but appealing task to procure electrochemical energy storage and conversion system with altitudinous performance. Herein, we replenish the rational construction of atypical electrode of hollow Zn-Ni-Co-oxide (ZNCO) nanosheet arrays onto rGO garnished Ni foam (rGO/NF) via two step solution based method. Firstly, 2D Zn-Co-MOFs derived nanoleave arrays are prepared by co-precipitation method. Next, hollow and porous ZNCO nanostructure from 2D solid nanoleave arrays are achieved by ion-exchange and etching process conjoined with post annealing treatment. The as-fabricated hierarchical ZNCO nanosheet arrays offer large numbers of electroactive sites with short ion-diffusion pathways, reflecting the outstanding electrochemical performance in-terms of excellent specific capacity (267 mAh g-1) ultra-high rate capability (83.82% at 50 A/g) and long-term cycling life (~90.16%) in three electrode configuration for supercapacitor (SCs). Moreover, the hollow and porous ZNCO nanostructure responds as immensely active and substantial electrocatalyst for methanol oxidation with lowest onset potential of 0.27 V. To demonstrate the practicability, hybrid supercapacitor (HSC) device is constructed using ZNCO@rGO-NF nanostructure as positive and rGO decorated MOF derived porous carbon (rGO-MDPC) as negative electrode. The as-assembled ZNCO//rGO-MDPC ASC device delivers higher energy density of 61.25 Wh kg-1 at the power density of 750 W kg-1 with long-term cyclic stability (<6% to its initial specific capacity value) after 6000 cycles.

15.
ACS Appl Mater Interfaces ; 13(15): 17487-17500, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33844490

RESUMEN

The scrupulous designation of hollow and porous electroactive materials incorporating prolific redox-active polyphase transition-metal oxide decorated with polyphase transition-metal sulfide onto rGO (reduced graphene oxide)-supported conductive substrate has never been an easy task due to the very good coordination affair of sulfur toward transition metals. Herein, cost-effective hydrothermal growth followed by a metal-organic framework (MOF)-mediated sulfidation approach is employed to achieve burl-like Ni-Co-S nanomaterial-integrated hollow and porous NiMoO4 nanotubes onto rGO-coated Ni foam (rGO-NiMoO4@Ni-Co-S) as the electrode material for supercapacitors. The open framework of the rGO-Co-MOF template after the etching and sulfidation process not only enables the creation of a tubular structure of NiMoO4 nanorods but also provides convenient ion-electron pathways to promote rapid faradic reactions for the hybrid composite electrode. Owing to the unique hollow and tubular structure, the as-fabricated rGO-NiMoO4@Ni-Co-S electrode exhibits a high specific capacity of 318 mA h g-1 at 1 A g-1 and remarkable cyclic performance of 88.87% after 10,000 consecutive charge-discharge cycles in an aqueous 2 M KOH electrolyte on a three-electrode configuration. Moreover, the assembled rGO-NiMoO4@Ni-Co-S//rGO-MDC (MOF-derived carbon) asymmetric supercapacitor device exhibits a satisfactory energy density of 57.24 W h kg-1 at a power density of 801.8 W kg-1 with an admirable life span of 90.89% after 10,000 repeated cycles.

16.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924640

RESUMEN

Essential oils prevent superbug formation, which is mainly caused by the continuous use of synthetic drugs. This is a significant threat to health, the environment, and food safety. Plant extracts in the form of essential oils are good enough to destroy pests and fight bacterial infections in animals and humans. In this review article, different essential oils containing polymeric nanofibers fabricated by electrospinning are reviewed. These nanofibers containing essential oils have shown applications in biomedical applications and as food-packaging materials. This approach of delivering essential oils in nanoformulations has attracted considerable attention in the scientific community due to its low price, a considerable ratio of surface area to volume, versatility, and high yield. It is observed that the resulting nanofibers possess antimicrobial, anti-inflammatory, and antioxidant properties. Therefore, they can reduce the use of toxic synthetic drugs that are utilized in the cosmetics, medicine, and food industries. These nanofibers increase barrier properties against light, oxygen, and heat, thereby protecting and preserving the food from oxidative damage. Moreover, the nanofibers discussed are introduced with naturally derived chemical compounds in a controlled manner, which simultaneously prevents their degradation. The nanofibers loaded with different essential oils demonstrate an ability to increase the shelf-life of various food products while using them as active packaging materials.


Asunto(s)
Embalaje de Alimentos , Nanofibras/química , Aceites Volátiles/química , Polímeros/química , Animales , Composición de Medicamentos , Humanos , Nanofibras/ultraestructura , Andamios del Tejido/química
17.
Materials (Basel) ; 13(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322491

RESUMEN

Zinc oxide (ZnO) nanorods incorporated activated carbon (AC) composite photocatalyst was synthesized using a hydrothermal process. The AC was prepared from lapsi (Choerospondias axillaris) seed stone, an agricultural waste product, found in Nepal by the chemical activation method. An aqueous suspension of AC with ZnO precursor was subjected to the hydrothermal treatment at 140 °C for 2 h to decorate ZnO rods into the surface of AC. As-obtained ZnO nanorods decorated activated carbon (ZnO/AC) photocatalyst was characterized by various techniques, such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) spectroscopy. Results showed that highly crystalline hexagonal ZnO nanorods were effectively grown on the surface of porous AC. The photocatalytic property of the as-prepared ZnO/AC composite was studied by degrading methylene blue (MB) dye under UV-light irradiation. The ZnO/AC composite showed better photocatalytic property than that of the pristine ZnO nanorods. The enhanced photocatalytic performance in the case of the ZnO/AC composite is attributed to the combined effects of ZnO nanorods and AC.

18.
Nanomaterials (Basel) ; 10(10)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019690

RESUMEN

Herein, we prepared a novel photocatalytic ZnO-TiO2 loaded carbon nanofibers composites (ZnO-TiO2-CNFs) via electrospinning technique followed by a hydrothermal process. At first, the electrospun TiO2 NP-embedded carbon nanofibers (TiO2-CNFs) were achieved using electrospinning and a carbonization process. Next, the ZnO particles were grown into the TiO2-CNFs via hydrothermal treatment. The morphology, structure, and chemical compositions were studied using state-of-the-art techniques. The photocatalytic performance of the ZnO-TiO2-CNFs composite was studied using degrading methylene blue (MB) under UV-light irradiation for three successive cycles. It was noticed that the ZnO-TiO2-CNFs nanocomposite showed better MB removal properties than that of other formulations, which might be due to the synergistic effects of carbon nanofibers and utilized metal oxides (ZnO and TiO2). The adsorption characteristic of carbon fibers and matched band potentials of ZnO and TiO2 combinedly help to boost the overall photocatalytic performance of the ZnO-TiO2-CNFs composite. The obtained results from this study indicated that it can be an economical and environmentally friendly photocatalyst.

19.
Molecules ; 25(5)2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32121021

RESUMEN

Fe1-xS-TiO2 nanoparticles embedded carbon nanofibers (Fe1-xS-TiO2/CNFs) composite as a supercapacitor electrode material has been reported in the present work. The Fe1-xS-TiO2/CNFs composite was fabricated by electrospinning technique followed by carbonization under argon atmosphere and characterized by the state-of-art techniques. The electrochemical studies were carried out in a 2 M KOH electrolyte solution. The synthesized material showed a specific capacitance value of 138 F/g at the current density of 1 A/g. Further, the capacitance retention was about 83%. The obtained results indicate that the Fe1-xS-TiO2/CNFs composite can be recognized as electrode material in supercapacitor.


Asunto(s)
Carbono/química , Capacidad Eléctrica , Hierro/química , Nanopartículas del Metal/química , Nanofibras/química , Titanio/química , Argón/química , Electrodos , Electrólitos/química , Hidróxidos/química , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nanofibras/ultraestructura , Compuestos de Potasio/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
20.
Polymers (Basel) ; 11(7)2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31311153

RESUMEN

A new and straightforward route was proposed to incorporate silver nanoparticles (Ag NPs) into the surface of polyurethane nanofibers (PU NFs). Uniform distribution of in situ formed Ag NPs on the surface of PU NFs was achieved by adding AgNO3 and tannic acid in a PU solution prior to the electrospinning process. The synthesized nanofiber mats were characterized with state-of-the-art techniques and antibacterial performances were tested against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. The cytocompatibility and cell behavior were studied by using fibroblast cells. Following this preparation route, Ag/PU NFs can be obtained with excellent antibacterial performance, thus making them appropriate for various applications such as water filtration, wound dressings, etc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...