Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 12: 633058, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732165

RESUMEN

Sarcolipin (SLN) is a regulator of sarco/endo plasmic reticulum Ca2+-ATPase (SERCA) pump and has been shown to be involved in muscle nonshivering thermogenesis (NST) and energy metabolism. Interestingly, SLN expression is significantly upregulated both during muscle development and in several disease states. However, the significance of altered SLN expression in muscle patho-physiology is not completely understood. We have previously shown that transgenic over-expression of SLN in skeletal muscle is not detrimental, and can promote oxidative metabolism and exercise capacity. In contrast, some studies have suggested that SLN upregulation in disease states is deleterious for muscle function and ablation of SLN can be beneficial. In this perspective article, we critically examine both published and some new data to determine the relevance of SLN expression to disease pathology. The new data presented in this paper show that SLN levels are induced in muscle during systemic bacterial (Salmonella) infection or lipopolysaccharides (LPS) treatment. We also present data showing that SLN expression is significantly upregulated in different types of muscular dystrophies including myotubular myopathy. These data taken together reveal that upregulation of SLN expression in muscle disease is progressive and increases with severity. Therefore, we suggest that increased SLN expression should not be viewed as the cause of the disease; rather, it is a compensatory response to meet the higher energy demand of the muscle. We interpret that higher SLN/SERCA ratio positively modulate cytosolic Ca2+ signaling pathways to promote mitochondrial biogenesis and oxidative metabolism to meet higher energy demand in muscle.

2.
Trends Endocrinol Metab ; 27(12): 881-892, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27637585

RESUMEN

Skeletal muscle constitutes ∼40% of body mass and has the capacity to play a major role as thermogenic, metabolic, and endocrine organ. In addition to shivering, muscle also contributes to nonshivering thermogenesis via futile sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) activity. Sarcolipin (SLN), a regulator of SERCA activity in muscle, plays an important role in regulating muscle thermogenesis and metabolism. Uncoupling of SERCA by SLN increases ATP hydrolysis and heat production, and contributes to temperature homeostasis. SLN also affects whole-body metabolism and weight gain in mice, and is upregulated in various muscle diseases including muscular dystrophy, suggesting a role for SLN during increased metabolic demand. In this review we also highlight the physiological roles of skeletal muscle beyond contraction.


Asunto(s)
Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteolípidos/metabolismo , Termogénesis/fisiología , Animales , Humanos , Proteínas Musculares/genética , Proteolípidos/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Termogénesis/genética
3.
J Exp Biol ; 218(Pt 15): 2321-5, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26026037

RESUMEN

Neonatal mice have a greater thermogenic need than adult mice and may require additional means of heat production, other than the established mechanism of brown adipose tissue (BAT). We and others recently discovered a novel mediator of skeletal muscle-based thermogenesis called sarcolipin (SLN) that acts by uncoupling sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA). In addition, we have shown that SLN expression is downregulated during neonatal development in rats. In this study we probed two questions: (1) is SLN expression developmentally regulated in neonatal mice?; and (2) if so, will cold adaptation override this? Our data show that SLN expression is higher during early neonatal stages and is gradually downregulated in fast twitch skeletal muscles. Interestingly, we demonstrate that cold acclimation of neonatal mice can prevent downregulation of SLN expression. This observation suggests that SLN-mediated thermogenesis can be recruited to a greater extent during extreme physiological need, in addition to BAT.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteolípidos/metabolismo , Termogénesis/fisiología , Aclimatación/fisiología , Tejido Adiposo Pardo/metabolismo , Animales , Animales Recién Nacidos , Regulación de la Temperatura Corporal/fisiología , Frío , Ratones , Proteínas Musculares/genética , Proteolípidos/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
4.
PLoS One ; 10(4): e0123875, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25859846

RESUMEN

The utrophin-dystrophin deficient (DKO) mouse model has been widely used to understand the progression of Duchenne muscular dystrophy (DMD). However, it is unclear as to what extent muscle pathology affects metabolism. Therefore, the present study was focused on understanding energy expenditure in the whole animal and in isolated extensor digitorum longus (EDL) muscle and to determine changes in metabolic enzymes. Our results show that the 8 week-old DKO mice consume higher oxygen relative to activity levels. Interestingly the EDL muscle from DKO mouse consumes higher oxygen per unit integral force, generates less force and performs better in the presence of pyruvate thus mimicking a slow twitch muscle. We also found that the expression of hexokinase 1 and pyruvate kinase M2 was upregulated several fold suggesting increased glycolytic flux. Additionally, there is a dramatic increase in dynamin-related protein 1 (Drp 1) and mitofusin 2 protein levels suggesting increased mitochondrial fission and fusion, a feature associated with increased energy demand and altered mitochondrial dynamics. Collectively our studies point out that the dystrophic disease has caused significant changes in muscle metabolism. To meet the increased energetic demand, upregulation of metabolic enzymes and regulators of mitochondrial fusion and fission is observed in the dystrophic muscle. A better understanding of the metabolic demands and the accompanied alterations in the dystrophic muscle can help us design improved intervention therapies along with existing drug treatments for the DMD patients.


Asunto(s)
Distrofina/deficiencia , Dinámicas Mitocondriales/genética , Distrofia Muscular Animal , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Utrofina/deficiencia , Animales , Modelos Animales de Enfermedad , Dinaminas/genética , Dinaminas/metabolismo , Metabolismo Energético , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Glucosa/metabolismo , Hexoquinasa/metabolismo , Masculino , Ratones , Ratones Noqueados , Contracción Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Consumo de Oxígeno , Piruvato Quinasa/metabolismo , Ácido Pirúvico/metabolismo
5.
J Appl Physiol (1985) ; 118(8): 1050-8, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25701006

RESUMEN

Sarcolipin (SLN) is a regulator of sarcoendoplasmic reticulum calcium ATPase in skeletal muscle. Recent studies using SLN-null mice have identified SLN as a key player in muscle thermogenesis and metabolism. In this study, we exploited a SLN overexpression (Sln(OE)) mouse model to determine whether increased SLN level affected muscle contractile properties, exercise capacity/fatigue, and metabolic rate in whole animals and isolated muscle. We found that Sln(OE) mice are more resistant to fatigue and can run significantly longer distances than wild-type (WT). Studies with isolated extensor digitorum longus (EDL) muscles showed that Sln(OE) EDL produced higher twitch force than WT. The force-frequency curves were not different between WT and Sln(OE) EDLs, but at lower frequencies the pyruvate-induced potentiation of force was significantly higher in Sln(OE) EDL. SLN overexpression did not alter the twitch and force-frequency curve in isolated soleus muscle. However, during a 10-min fatigue protocol, both EDL and soleus from Sln(OE) mice fatigued significantly less than WT muscles. Interestingly, Sln(OE) muscles showed higher carnitine palmitoyl transferase-1 protein expression, which could enhance fatty acid metabolism. In addition, lactate dehydrogenase expression was higher in Sln(OE) EDL, suggesting increased glycolytic capacity. We also found an increase in store-operated calcium entry (SOCE) in isolated flexor digitorum brevis fibers of Sln(OE) compared with WT mice. These data allow us to conclude that increased SLN expression improves skeletal muscle performance during prolonged muscle activity by increasing SOCE and muscle energetics.


Asunto(s)
Tolerancia al Ejercicio , Proteínas Musculares/fisiología , Músculo Esquelético/fisiología , Proteolípidos/fisiología , Animales , Calcio/metabolismo , Calsecuestrina/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Masculino , Ratones Endogámicos C57BL , Fatiga Muscular , Miosinas/metabolismo , Condicionamiento Físico Animal , Ácido Pirúvico/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
6.
J Biol Chem ; 290(17): 10840-9, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25713078

RESUMEN

Sarcolipin (SLN) is a novel regulator of sarcoplasmic reticulum Ca(2+) ATPase (SERCA) in muscle. SLN binding to SERCA uncouples Ca(2+) transport from ATP hydrolysis. By this mechanism, SLN promotes the futile cycling of SERCA, contributing to muscle heat production. We recently showed that SLN plays an important role in cold- and diet-induced thermogenesis. However, the detailed mechanism of how SLN regulates muscle metabolism remains unclear. In this study, we used both SLN knockout (Sln(-/-)) and skeletal muscle-specific SLN overexpression (Sln(OE)) mice to explore energy metabolism by pair feeding (fixed calories) and high-fat diet feeding (ad libitum). Our results show that, upon pair feeding, Sln(OE) mice lost weight compared with the WT, but Sln(-/-) mice gained weight. Interestingly, when fed with a high-fat diet, Sln(OE) mice consumed more calories but gained less weight and maintained a normal metabolic profile in comparison with WT and Sln(-/-) mice. We found that oxygen consumption and fatty acid oxidation were increased markedly in Sln(OE) mice. There was also an increase in both mitochondrial number and size in Sln(OE) muscle, together with increased expression of peroxisome proliferator-activated receptor δ (PPARδ) and PPAR γ coactivator 1 α (PGC1α), key transcriptional activators of mitochondrial biogenesis and enzymes involved in oxidative metabolism. These results, taken together, establish an important role for SLN in muscle metabolism and energy expenditure. On the basis of these data we propose that SLN is a novel target for enhancing whole-body energy expenditure.


Asunto(s)
Metabolismo Basal/fisiología , Metabolismo Energético/fisiología , Proteínas Musculares/metabolismo , Obesidad/prevención & control , Proteolípidos/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Dieta Alta en Grasa/efectos adversos , Ingestión de Energía , Ácidos Grasos/metabolismo , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Oxidación-Reducción , Consumo de Oxígeno , PPAR delta/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteolípidos/deficiencia , Proteolípidos/genética , Receptores Adrenérgicos beta 2/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Pérdida de Peso
8.
Nat Med ; 18(10): 1575-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22961106

RESUMEN

The role of skeletal muscle in nonshivering thermogenesis (NST) is not well understood. Here we show that sarcolipin (Sln), a newly identified regulator of the sarco/endoplasmic reticulum Ca(2+)-ATPase (Serca) pump, is necessary for muscle-based thermogenesis. When challenged to acute cold (4 °C), Sln(-/-) mice were not able to maintain their core body temperature (37 °C) and developed hypothermia. Surgical ablation of brown adipose tissue and functional knockdown of Ucp1 allowed us to highlight the role of muscle in NST. Overexpression of Sln in the Sln-null background fully restored muscle-based thermogenesis, suggesting that Sln is the basis for Serca-mediated heat production. We show that ryanodine receptor 1 (Ryr1)-mediated Ca(2+) leak is an important mechanism for Serca-activated heat generation. Here we present data to suggest that Sln can continue to interact with Serca in the presence of Ca(2+), which can promote uncoupling of the Serca pump and cause futile cycling. We further show that loss of Sln predisposes mice to diet-induced obesity, which suggests that Sln-mediated NST is recruited during metabolic overload. These data collectively suggest that SLN is an important mediator of muscle thermogenesis and whole-body energy metabolism.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Proteínas Musculares/metabolismo , Proteolípidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Termogénesis/fisiología , Tejido Adiposo Pardo/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Metabolismo Energético/genética , Células HEK293 , Humanos , Canales Iónicos/deficiencia , Canales Iónicos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Obesidad/genética , Proteolípidos/deficiencia , Proteolípidos/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteína Desacopladora 1
9.
J Cell Biol ; 196(4): 497-511, 2012 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-22351927

RESUMEN

Although the physiological basis of canonical or classical IκB kinase ß (IKKß)-nuclear factor κB (NF-κB) signaling pathway is well established, how alternative NF-κB signaling functions beyond its role in lymphoid development remains unclear. In particular, alternative NF-κB signaling has been linked with cellular metabolism, but this relationship is poorly understood. In this study, we show that mice deleted for the alternative NF-κB components IKKα or RelB have reduced mitochondrial content and function. Conversely, expressing alternative, but not classical, NF-κB pathway components in skeletal muscle stimulates mitochondrial biogenesis and specifies slow twitch fibers, suggesting that oxidative metabolism in muscle is selectively controlled by the alternative pathway. The alternative NF-κB pathway mediates this specificity by direct transcriptional activation of the mitochondrial regulator PPAR-γ coactivator 1ß (PGC-1ß) but not PGC-1α. Regulation of PGC-1ß by IKKα/RelB also is mammalian target of rapamycin (mTOR) dependent, highlighting a cross talk between mTOR and NF-κB in muscle metabolism. Together, these data provide insight on PGC-1ß regulation during skeletal myogenesis and reveal a unique function of alternative NF-κB signaling in promoting an oxidative metabolic phenotype.


Asunto(s)
Respiración de la Célula , Quinasa I-kappa B/metabolismo , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , FN-kappa B/metabolismo , Animales , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Regulación de la Expresión Génica , Técnicas para Inmunoenzimas , Luciferasas/metabolismo , Ratones , Mitocondrias/metabolismo , Músculo Esquelético/citología , Mioblastos/citología , FN-kappa B/genética , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA