Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Microsyst Nanoeng ; 10: 5, 2024.
Article En | MEDLINE | ID: mdl-38179438

The design, analysis, fabrication, and characterization of two distinct MEMS rotational structures are provided; these structures include a classical symmetrical lancet structure and a novel symmetrical C-shaped structure provided with a tilted arm, and both are actuated by thermal actuators. Our proposed C-shaped structure implemented a curved beam mechanism to enhance the movement delivered by the thermal actuators. The geometrical parameters of our proposed device were optimized using the design of experiment (DOE) method. Furthermore, the analytical modeling based on Castigliano's second theorem and the simulations based on the finite element method (FEM) were used to predict the behavior of the symmetrical C-shaped structure; the results were in good agreement with each other. The MEMS-based rotational structures were fabricated on silicon-on-insulator (SOI) wafers using bulk micromachining technology and deep reactive ion etching (DRIE) processes. The fabricated devices underwent experimental characterization; our results showed that our proposed MEMS rotational structure exhibited a 28% improvement in the delivered displacement compared to the symmetrical lancet structure. Furthermore, the experimental results showed good agreement with those obtained from numerical analysis. Our proposed structures have potential applications in a variety of MEMS devices, including accelerometers, gyroscopes, and resonators, due to their ability to maximize displacement and thus enhance sensitivity.

2.
iScience ; 26(2): 105924, 2023 Feb 17.
Article En | MEDLINE | ID: mdl-36866039

Ultrathin polymeric films have recently attracted tremendous interest as functional components of coatings, separation membranes, and sensors, with applications spanning from environment-related processes to soft robotics and wearable devices. In order to support the development of robust devices with advanced performances, it is necessary to achieve a deep comprehension of the mechanical properties of ultrathin polymeric films, which can be significantly affected by confinement effects at the nanoscale. In this review paper, we collect the most recent advances in the development of ultrathin organic membranes with emphasis on the relationship between their structure and mechanical properties. We provide the reader with a critical overview of the main approaches for the preparation of ultrathin polymeric films, the methodologies for the investigation of their mechanical properties, and models to understand the primary effects that impact their mechanical response, followed by a discussion on the current trends for designing mechanically robust organic membranes.

3.
ACS Photonics ; 10(2): 394-400, 2023 Feb 15.
Article En | MEDLINE | ID: mdl-36820323

Terahertz spectroscopy is a perfect tool to investigate the electronic intraband conductivity of graphene, but a phenomenological model (Drude-Smith) is often needed to describe disorder. By studying the THz response of isotropically strained polycrystalline graphene and using a fully atomistic computational approach to fit the results, we demonstrate here the connection between the Drude-Smith parameters and the microscopic behavior. Importantly, we clearly show that the strain-induced changes in the conductivity originate mainly from the increased separation between the single-crystal grains, leading to enchanced localization of the plasmon excitations. Only at the lowest strain values explored, a behavior consistent with the deformation of the individual grains can instead be observed.

4.
Micromachines (Basel) ; 13(9)2022 Aug 25.
Article En | MEDLINE | ID: mdl-36144014

Microgrippers are promising tools for micro-manipulation and characterization of cells. In this paper, a biocompatible electro-thermally actuated microgripper with rotary capacitive position sensor is presented. To overcome the limited displacement possibilities usually provided by electrothermal actuators and to achieve the desired tweezers output displacement, conjugate surface flexure hinges (CSFH) are adopted. The microgripper herein reported can in principle manipulate biological samples in the size range between 15 and 120 µm. A kinematics modeling approach based on the pseudo-rigid-body-method (PRBM) is applied to describe the microgripper's working mechanism, and analytical modeling, based on finite elements method (FEM), is used to optimize the electrothermal actuator design and the heat dissipation mechanism. Finally, FEM-based simulations are carried out to verify the microgripper, the electrothermal actuator and heat dissipation mechanism performance, and to assess the validity of the analytical modeling.

5.
ACS Omega ; 6(12): 8308-8312, 2021 Mar 30.
Article En | MEDLINE | ID: mdl-33817490

Poly(methyl methacrylate) (PMMA) is a glassy engineering polymer that finds extensive use in a number of applications. Over the past decade, thin films of PMMA were combined with graphene or other two-dimensional materials for applications in the area of nanotechnology. However, the effect of size upon the mechanical behavior of this thermoplastic polymer has not been fully examined. In this work, we adopted a homemade nanomechanical device to assess the yielding and fracture characteristics of freestanding, ultrathin (180-280 nm) PMMA films of a loaded area as large as 0.3 mm2. The measured values of Young's modulus and yield strength were found to be broadly similar to those measured in the bulk, but in contrast, all specimens exhibited a quite surprisingly high strain at failure (>20%). Detailed optical examination of the specimens during tensile loading showed clear evidence of craze development which however did not lead to premature fracture. This work may pave the way for the development of glassy thermoplastic films with high ductility at ambient temperatures.

6.
Front Bioeng Biotechnol ; 8: 560349, 2020.
Article En | MEDLINE | ID: mdl-33251194

Bionic composites are an emerging class of materials produced exploiting living organisms as reactors to include synthetic functional materials in their native and highly performing structures. In this work, single wall carboxylated carbon nanotubes (SWCNT-COOH) were incorporated within the roots of living plants of Arabidopsis thaliana. This biogenic synthetic route produced a bionic composite material made of root components and SWCNT-COOH. The synthesis was possible exploiting the transport processes existing in the plant roots. Scanning electrochemical microscopy (SECM) measurements showed that SWCNT-COOH entered the vascular bundles of A. thaliana roots localizing within xylem vessels. SWCNT-COOH preserved their electrical properties when embedded inside the root matrix, both at a microscopic level and a macroscopic level, and did not significantly affect the mechanical properties of A. thaliana roots.

7.
Int J Mol Sci ; 21(22)2020 Nov 14.
Article En | MEDLINE | ID: mdl-33202571

Hybrid nanomaterials fabricated by the heterogeneous integration of 1D (carbon nanotubes) and 2D (graphene oxide) nanomaterials showed synergy in electrical and mechanical properties. Here, we reported the infiltration of carboxylic functionalized single-walled carbon nanotubes (C-SWNT) into free-standing graphene oxide (GO) paper for better electrical and mechanical properties than native GO. The stacking arrangement of GO sheets and its alteration in the presence of C-SWNT were comprehensively explored through scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. The C-SWNTs bridges between different GO sheets produce a pathway for the flow of electrical charges and provide a tougher hybrid system. The nanoscopic surface potential map reveals a higher work function of the individual functionalised SWNTs than surrounded GO sheets showing efficient charge exchange. We observed the enhanced conductivity up to 50 times and capacitance up to 3.5 times of the hybrid structure than the GO-paper. The laminate of polystyrene composites provided higher elastic modulus and mechanical strength when hybrid paper is used, thus paving the way for the exploitation of hybrid filler formulation in designing polymer composites.


Electric Conductivity , Graphite/chemistry , Nanotubes, Carbon/chemistry , Paper , Polystyrenes/chemistry
8.
Sci Rep ; 9(1): 5776, 2019 04 08.
Article En | MEDLINE | ID: mdl-30962468

Spider silk and spider orb webs are among the most studied biological materials and structures owing to their outstanding mechanical properties. A key feature that contributes significantly to the robustness and capability to absorb high kinetic energy of spider webs is the presence of junctions connecting different silk threads. Surprisingly, in spite of their fundamental function, the mechanics of spider web junctions have never been reported. Herein, through mechanical characterization and imaging, we show for the first time that spider orb webs host two different types of junction, produced by different silk glands, which have different morphology, and load bearing capability. These differences can be explained in view of the different roles they play in the web, i.e. allowing for a localized damage control or anchoring the whole structure to the surrounding environment.


Mechanical Phenomena , Silk/ultrastructure , Spiders/physiology , Animals , Exocrine Glands/physiology , Silk/chemistry
9.
Nanotechnology ; 29(39): 395707, 2018 Sep 28.
Article En | MEDLINE | ID: mdl-29947330

Standard tensile tests of materials are usually performed on freestanding specimens. However, such requirement is difficult to implement when the materials of interest are of nanoscopic dimensions due to problems related to their handling and manipulation. In the present paper, a new device is presented for tensile testing of thin nanomaterials, which allows tests to be carried out on specimens initially deposited onto a macroscopic pre-notched substrate. On loading, however, no substrate effects are introduced, allowing the films to be freely stretched. The results obtained from a variety of thin metal or polymeric films are very promising for the further development of this technique as a standard method for nanomaterial mechanical testing.

10.
Nat Commun ; 9(1): 2145, 2018 06 01.
Article En | MEDLINE | ID: mdl-29858566

A major goal in materials science is to develop bioinspired functional materials based on the precise control of molecular building blocks across length scales. Here we report a protein-mediated mineralization process that takes advantage of disorder-order interplay using elastin-like recombinamers to program organic-inorganic interactions into hierarchically ordered mineralized structures. The materials comprise elongated apatite nanocrystals that are aligned and organized into microscopic prisms, which grow together into spherulite-like structures hundreds of micrometers in diameter that come together to fill macroscopic areas. The structures can be grown over large uneven surfaces and native tissues as acid-resistant membranes or coatings with tuneable hierarchy, stiffness, and hardness. Our study represents a potential strategy for complex materials design that may open opportunities for hard tissue repair and provide insights into the role of molecular disorder in human physiology and pathology.


Calcification, Physiologic , Dentin/metabolism , Elastin/metabolism , Intrinsically Disordered Proteins/metabolism , Minerals/metabolism , Amino Acid Sequence , Dental Enamel/chemistry , Dentin/chemistry , Dentin/ultrastructure , Elastin/chemistry , Elastin/ultrastructure , Humans , Hydroxyapatites/chemistry , Hydroxyapatites/metabolism , Intrinsically Disordered Proteins/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Minerals/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
11.
Interface Focus ; 6(1): 20150060, 2016 Feb 06.
Article En | MEDLINE | ID: mdl-26855750

The combination of high strength and high toughness is a desirable feature that structural materials should display. However, while in the past, engineers had to compromise on either strength or toughness depending on the requested application, nowadays, new toughening strategies are available to provide strong materials with high toughness. In this paper, we focus on one of such strategy, which requires no chemical treatment, but the implementation of slip knots with optimized shape and size in the involved material, which is silkworm silk in this case. In particular, a variety of slip knot topologies with different unfastening mechanisms are investigated, including even complex knots usually used in the textile industry, and their efficiency in enhancing toughness of silk fibres is discussed.

12.
Sci Rep ; 6: 18222, 2016 Feb 12.
Article En | MEDLINE | ID: mdl-26868855

Knots are fascinating topological elements, which can be found in both natural and artificial systems. While in most of the cases, knots cannot be loosened without breaking the strand where they are tightened, herein, attention is focused on slip or running knots, which on the contrary can be unfastened without compromising the structural integrity of their hosting material. Two different topologies are considered, involving opposite unfastening mechanisms, and their influence on the mechanical properties of natural fibers, as silkworm silk raw and degummed single fibers, is investigated and quantified. Slip knots with optimized shape and size result in a significant enhancement of fibers energy dissipation capability, up to 300-400%, without affecting their load bearing capacity.


Molecular Conformation , Silk/chemistry , Tensile Strength , Animals , Elastic Modulus , Stress, Mechanical
13.
ACS Nano ; 10(2): 2251-8, 2016 Feb 23.
Article En | MEDLINE | ID: mdl-26767699

Mechanical vibrational resonances in metal nanoparticles are intensively studied because they provide insight into nanoscale elasticity and for their potential application to ultrasensitive mass detection. In this paper, we use broadband femtosecond pump-probe spectroscopy to study the longitudinal acoustic phonons of arrays of gold nanorods with different aspect ratios, fabricated by electron beam lithography with very high size uniformity. We follow in real time the impulsively excited extensional oscillations of the nanorods by measuring the transient shift of the localized surface plasmon band. Broadband and high-sensitivity detection of the time-dependent extinction spectra enables one to develop a model that quantitatively describes the periodic variation of the plasmon extinction coefficient starting from the steady-state spectrum with only one additional free parameter. This model allows us to retrieve the time-dependent elongation of the nanorods with an ultrahigh sensitivity and to measure oscillation amplitudes of just a few picometers and plasmon energy shifts on the order of 10(-2) meV.

14.
Recent Pat Nanotechnol ; 5(1): 37-45, 2011 Jan.
Article En | MEDLINE | ID: mdl-21231910

In recent years, the development of cost-effective processing techniques, novel design concepts and new materials paved the way to a widespread diffusion of micro- and nano-electro-mechanical systems (NEMS/MEMS). Obviously, the reliability as well as the performance of NEMS/MEMS depend on the corresponding materials properties, which in turn should be determined using ad-hoc small samples fabricated at the relevant size-scale. For this reason, in the last decade research efforts have been devoted to the development of experimental techniques suitable for the mechanical characterization of materials at micro- and nano-scale. There are many contributions stemming from this research area, the purpose of the present work is to give an overview of the most recent patented works. The focus will be directed to selected patents on the mechanical characterization of both micro- and nanosamples, like nanotubes and nanowires. Special emphasis will be given to the methods suited for the determination of elastic properties, fracture resistance and residual stresses of materials.


Nanotechnology , Patents as Topic , Compressive Strength , Elasticity , Hardness Tests , Tensile Strength
...