Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 116(8): 2074-2086, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31038200

RESUMEN

Efficient xylose utilization will facilitate microbial conversion of lignocellulosic sugar mixtures into valuable products. In Escherichia coli, xylose catabolism is controlled by carbon catabolite repression (CCR). However, in E. coli such as the succinate-producing strain KJ122 with disrupted CCR, xylose utilization is still inhibited under fermentative conditions. To probe the underlying genetic mechanisms inhibiting xylose utilization, we evolved KJ122 to enhance its xylose fermentation abilities in parallel and characterized the potential convergent genetic changes shared by multiple independently evolved strains. Whole-genome sequencing revealed that convergent mutations occurred in the galactose regulon during adaptive laboratory evolution potentially decreasing the transcriptional level or the activity of GalP, a galactose permease. We showed that deletion of galP increased xylose utilization in both KJ122 and wild-type E. coli, demonstrating a common repressive role of GalP for xylose fermentation. Concomitantly, induced expression of galP from a plasmid repressed xylose fermentation. Transcriptome analysis using RNA sequencing indicates that galP inactivation increases transcription levels of many catabolic genes for secondary sugars including xylose and arabinose. The repressive role of GalP for fermenting secondary sugars in E. coli suggests that utilization of GalP as a substitute glucose transporter is undesirable for conversion of lignocellulosic sugar mixtures.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Xilosa/metabolismo , Represión Catabólica , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fermentación , Ingeniería Metabólica , Proteínas de Transporte de Monosacáridos/genética , Mutación , Ácido Succínico/metabolismo , Xilosa/genética
2.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30635383

RESUMEN

Efficient microbial conversion of lignocellulose into valuable products is often hindered by the presence of furfural, a dehydration product of pentoses in hemicellulose sugar syrups derived from woody biomass. For a cost-effective lignocellulose microbial conversion, robust biocatalysts are needed that can tolerate toxic inhibitors while maintaining optimal metabolic activities. A comprehensive plasmid-based library encoding native multidrug resistance (MDR) efflux pumps, porins, and select exporters from Escherichia coli was screened for furfural tolerance in an ethanologenic E. coli strain. Small multidrug resistance (SMR) pumps, such as SugE and MdtJI, as well as a lactate/glycolate:H+ symporter, LldP, conferred furfural tolerance in liquid culture tests. Expression of the SMR pump potentially increased furfural efflux and cellular viability upon furfural assault, suggesting novel activities for SMR pumps as furfural efflux proteins. Furthermore, induced expression of mdtJI enhanced ethanol fermentative production of LY180 in the presence of furfural or 5-hydroxymethylfurfural, further demonstrating the applications of SMR pumps. This work describes an effective approach to identify useful efflux systems with desired activities for nonnative toxic chemicals and provides a platform to further enhance furfural efflux by protein engineering and mutagenesis.IMPORTANCE Lignocellulosic biomass, especially agricultural residues, represents an important potential feedstock for microbial production of renewable fuels and chemicals. During the deconstruction of hemicellulose by thermochemical processes, side products that inhibit cell growth and production, such as furan aldehydes, are generated, limiting cost-effective lignocellulose conversion. Here, we developed a new approach to increase cellular tolerance by expressing multidrug resistance (MDR) pumps with putative efflux activities for furan aldehydes. The developed plasmid library and screening methods may facilitate new discoveries of MDR pumps for diverse toxic chemicals important for microbial conversion.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/metabolismo , Furaldehído/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Bioprospección , Proteínas de Escherichia coli/genética , Fermentación , Furaldehído/análogos & derivados , Ingeniería Genética , Lignina/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética
3.
Proc Natl Acad Sci U S A ; 114(28): 7349-7354, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28655843

RESUMEN

Microbial production of fuels and chemicals from lignocellulosic biomass provides promising biorenewable alternatives to the conventional petroleum-based products. However, heterogeneous sugar composition of lignocellulosic biomass hinders efficient microbial conversion due to carbon catabolite repression. The most abundant sugar monomers in lignocellulosic biomass materials are glucose and xylose. Although industrial Escherichia coli strains efficiently use glucose, their ability to use xylose is often repressed in the presence of glucose. Here we independently evolved three E. coli strains from the same ancestor to achieve high efficiency for xylose fermentation. Each evolved strain has a point mutation in a transcriptional activator for xylose catabolic operons, either CRP or XylR, and these mutations are demonstrated to enhance xylose fermentation by allelic replacements. Identified XylR variants (R121C and P363S) have a higher affinity to their DNA binding sites, leading to a xylose catabolic activation independent of catabolite repression control. Upon introducing these amino acid substitutions into the E. coli D-lactate producer TG114, 94% of a glucose-xylose mixture (50 g⋅L-1 each) was used in mineral salt media that led to a 50% increase in product titer after 96 h of fermentation. The two amino acid substitutions in XylR enhance xylose utilization and release glucose-induced repression in different E. coli hosts, including wild type, suggesting its potential wide application in industrial E. coli biocatalysts.


Asunto(s)
Represión Catabólica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Mutación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transporte Biológico , Carbono/química , ADN Bacteriano/genética , Evolución Molecular Dirigida , Fermentación , Ingeniería Genética , Genoma Bacteriano , Glucosa/química , Ácido Láctico/química , Lignina/química , Ingeniería Metabólica , Metabolismo , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Azúcares/química , Xilosa/química , Xilosa/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-25741507

RESUMEN

Production of fuels and chemicals through a fermentation-based manufacturing process that uses renewable feedstock such as lignocellulosic biomass is a desirable alternative to petrochemicals. Although it is still in its infancy, synthetic biology offers great potential to overcome the challenges associated with lignocellulose conversion. In this review, we will summarize the identification and optimization of synthetic biological parts used to enhance the utilization of lignocellulose-derived sugars and to increase the biocatalyst tolerance for lignocellulose-derived fermentation inhibitors. We will also discuss the ongoing efforts and future applications of synthetic integrated biological systems used to improve lignocellulose conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...