Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Sci Adv ; 8(7): eabl8861, 2022 Feb 18.
Article En | MEDLINE | ID: mdl-35171669

Transition from the stem/progenitor cell fate to meiosis is mediated by several redundant posttranscriptional regulatory pathways in Caenorhabditis elegans. Interfering with all three branches causes tumorous germ lines. SCFPROM-1 comprises one branch and mediates a scheduled degradation step at entry into meiosis. prom-1 mutants show defects in the timely initiation of meiotic prophase I events, resulting in high rates of embryonic lethality. Here, we identify the phosphatase PPM-1.D/Wip1 as crucial substrate for PROM-1. We report that PPM-1.D antagonizes CHK-2 kinase, a key regulator for meiotic prophase initiation, including DNA double-strand breaks, chromosome pairing, and synaptonemal complex formation. We propose that PPM-1.D controls the amount of active CHK-2 via both catalytic and noncatalytic activities; notably, noncatalytic regulation seems to be crucial at meiotic entry. PPM-1.D sequesters CHK-2 at the nuclear periphery, and programmed SCFPROM-1-mediated degradation of PPM-1.D liberates the kinase and promotes meiotic entry.

2.
Elife ; 92020 10 08.
Article En | MEDLINE | ID: mdl-33030429

Life of sexually reproducing organisms starts with the fusion of the haploid egg and sperm gametes to form the genome of a new diploid organism. Using the newly fertilized Caenorhabditis elegans zygote, we show that the mitotic Polo-like kinase PLK-1 phosphorylates the lamin LMN-1 to promote timely lamina disassembly and subsequent merging of the parental genomes into a single nucleus after mitosis. Expression of non-phosphorylatable versions of LMN-1, which affect lamina depolymerization during mitosis, is sufficient to prevent the mixing of the parental chromosomes into a single nucleus in daughter cells. Finally, we recapitulate lamina depolymerization by PLK-1 in vitro demonstrating that LMN-1 is a direct PLK-1 target. Our findings indicate that the timely removal of lamin is essential for the merging of parental chromosomes at the beginning of life in C. elegans and possibly also in humans, where a defect in this process might be fatal for embryo development.


Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Laminin/genetics , Protein Serine-Threonine Kinases/genetics , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Embryo, Nonmammalian/metabolism , Genome, Helminth , Laminin/metabolism , Mitosis , Phosphorylation , Protein Serine-Threonine Kinases/metabolism
3.
Curr Opin Cell Biol ; 64: 34-42, 2020 06.
Article En | MEDLINE | ID: mdl-32109733

The nucleus is one of the membrane-bound organelles that are a distinguishing feature between eukaryotes and prokaryotes. During meiosis, the nuclear envelope takes on functions beyond separating the nucleoplasm from the cytoplasm. These include associations with meiotic chromosomes to mediate pairing, being a sensor for recombination progression, and supportive of enormous nuclear growth during oocyte formation. In this review, we highlight recent results that have contributed to our understanding of meiotic nuclear envelope function and dynamics.


Meiosis , Nuclear Envelope/metabolism , Animals , Chromosomes/metabolism , Fertilization , Lamins/metabolism , Oocytes/metabolism
4.
Nucleus ; 10(1): 1-6, 2019 12.
Article En | MEDLINE | ID: mdl-30676220

Active meiotic chromosome movements are a universally conserved feature. They occur at the early stages of prophase of the first meiotic division and support the chromosome pairing process by (1) efficiently installing the synaptonemal complex between homologous chromosomes, (2) discouraging inadvertent chromosome interactions and (3) bringing homologous chromosomes into proximity. Chromosome movements are driven by forces in the cytoplasm, which are passed on to chromosome ends attached to the nuclear periphery by nuclear-membrane-spanning protein modules. In this extra view, we highlight our recent studies into the role of the nuclear lamina during this process to emphasize that it is a highly conserved structure in metazoans. The nuclear lamina forms a rigid proteinaceous network that underlies the inner nuclear membrane to provide stability to the nucleus. Misdemeanors of the nuclear lamina during meiosis has deleterious consequences for the viability and health of the offspring, highlighting the importance of a functional nuclear lamina during this cell cycle stage. Abbreviations: DSB: DNA double strand break; LEM: LAP2, Emerin, MAN1; LINC: LInker of the Nucleoskeleton and Cytoskeleton; RPM: rapid prophase movement; SUN/KASH: Sad1p, UNC-84/Klarsicht, ANC-1, Syne Homology.


Chromosomes/metabolism , Lamins/metabolism , Meiosis , Animals , Humans
5.
Dev Cell ; 45(2): 212-225.e7, 2018 04 23.
Article En | MEDLINE | ID: mdl-29689196

Meiotic chromosome movement is important for the pairwise alignment of homologous chromosomes, which is required for correct chromosome segregation. Movement is driven by cytoplasmic forces, transmitted to chromosome ends by nuclear membrane-spanning proteins. In animal cells, lamins form a prominent scaffold at the nuclear periphery, yet the role lamins play in meiotic chromosome movement is unclear. We show that chromosome movement correlates with reduced lamin association with the nuclear rim, which requires lamin phosphorylation at sites analogous to those that open lamina network crosslinks in mitosis. Failure to remodel the lamina results in delayed meiotic entry, altered chromatin organization, unpaired or interlocked chromosomes, and slowed chromosome movement. The remodeling kinases are delivered to lamins via chromosome ends coupled to the nuclear envelope, potentially enabling crosstalk between the lamina and chromosomal events. Thus, opening the lamina network plays a role in modulating contacts between chromosomes and the nuclear periphery during meiosis.


Animals, Genetically Modified/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Chromosome Segregation , Chromosomes/genetics , Meiotic Prophase I/genetics , Nuclear Lamina/pathology , Animals , Animals, Genetically Modified/growth & development , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Cell Nucleus/genetics , Cell Nucleus/pathology , Chromosome Pairing , Cytoplasm , Gene Expression Regulation , Nuclear Envelope/genetics , Nuclear Envelope/pathology , Nuclear Lamina/genetics , Phosphorylation
6.
Curr Biol ; 26(21): 2873-2884, 2016 11 07.
Article En | MEDLINE | ID: mdl-27720619

Crossover (CO) recombination creates a physical connection between homologs that promotes their proper segregation at meiosis I (MI). Failure to realize an obligate CO causes homologs to attach independently to the MI spindle and separate randomly, leading to nondisjunction. However, mechanisms that determine whether homolog pairs have received crossovers remain mysterious. Here we describe a surveillance system in C. elegans that monitors recombination intermediates and couples their formation to meiotic progression. Recombination intermediates are required to activate the system, which then delays further processing if crossover precursors are lacking on even one chromosome. The synaptonemal complex, a specialized, proteinaceous structure connecting homologous chromosomes, is stabilized in cis on chromosomes that receive a crossover and is destabilized on those lacking crossovers, a process that is dependent on the function of the polo-like kinase PLK-2. These results reveal a new layer of communication between crossover-committed intermediates and the synaptonemal complex that functions as a cis-acting, obligate, crossover-counting mechanism.


Caenorhabditis elegans/genetics , Crossing Over, Genetic/genetics , Meiosis , Synaptonemal Complex/genetics , Animals
7.
Genetics ; 203(2): 733-48, 2016 06.
Article En | MEDLINE | ID: mdl-27098914

SUN (Sad1 and UNC-84) and KASH (Klarsicht, ANC-1, and Syne homology) proteins are constituents of the inner and outer nuclear membranes. They interact in the perinuclear space via C-terminal SUN-KASH domains to form the linker of nucleoskeleton and cytoskeleton (LINC) complex thereby bridging the nuclear envelope. LINC complexes mediate numerous biological processes by connecting chromatin with the cytoplasmic force-generating machinery. Here we show that the coiled-coil domains of SUN-1 are required for oligomerization and retention of the protein in the nuclear envelope, especially at later stages of female gametogenesis. Consistently, deletion of the coiled-coil domain makes SUN-1 sensitive to unilateral force exposure across the nuclear membrane. Premature loss of SUN-1 from the nuclear envelope leads to embryonic death due to loss of centrosome-nuclear envelope attachment. However, in contrast to previous notions we can show that the coiled-coil domain is dispensable for functional LINC complex formation, exemplified by successful chromosome sorting and synapsis in meiotic prophase I in its absence.


Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Nuclear Envelope/metabolism , Oogonia/metabolism , Protein Multimerization , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Female , Meiosis , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein Domains , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/genetics
...