Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Europace ; 25(6)2023 06 02.
Article En | MEDLINE | ID: mdl-37314195

AIMS: Risk stratification for sudden cardiac death in patients with Brugada syndrome remains a major challenge. Contemporary risk prediction models have only modest predictive value. The aim of this study was to assess the role of micro-RNAs from peripheral blood as candidate biomarkers in Brugada syndrome. METHODS AND RESULTS: In this prospective study, Brugada patients and unaffected control individuals were enrolled for analysis of leucocyte-derived microRNAs (miRNAs) levels. Expression levels of 798 different circulating miRNAs were analysed on the NanoString® nCounter platform. All results were cross-validated by using a quantitative polymerase chain reaction. Micro-RNA expression levels of Brugada patients were compared with clinical data. A total of 21 definite Brugada patients (38% with a history of ventricular arrhythmia or cardiac arrest) and 30 unaffected control individuals were included in the study. Micro-RNA analysis showed a distinct expression profile in Brugada patients with 42 differentially expressed markers (38 up-regulated, 4 down-regulated miRNAs). The symptom status of Brugada patients was associated with a distinct miRNA signature. Micro-RNAs 145-5p and 585-3p were significantly up-regulated in symptomatic Brugada patients (P = 0.04). Incorporating miRNAs 145-5p and 585-3p into a multivariable model demonstrated significantly increased symptom prediction (area under the curve = 0.96; 95% confidence interval: 0.88-1.00). CONCLUSION: Brugada patients display a distinct miRNA expression profile compared with unaffected control individuals. There is also evidence that certain miRNAs (miR-145-5p and miR-585-3p) are associated with the symptom status of Brugada patients. The results suggest the principal utility of leucocyte-derived miRNAs as prognostic biomarkers for Brugada syndrome.


Brugada Syndrome , Circulating MicroRNA , MicroRNAs , Humans , MicroRNAs/genetics , Brugada Syndrome/diagnosis , Brugada Syndrome/genetics , Prospective Studies , Circulating MicroRNA/genetics , Biomarkers
2.
Lung Cancer ; 181: 107247, 2023 07.
Article En | MEDLINE | ID: mdl-37209596

BACKGROUND: Somatic epidermal growth factor receptor (EGFR) pathogenic variants have been identified and are routinely tested in the molecular diagnosis of non-small cell lung cancer (NSCLC) as they represent a target for EGFR tyrosine kinase inhibitor (TKI) therapy. However, germline variants in EGFR are much less frequently reported. CASE PRESENTATION: Herein, we report the case of a 46-year-old woman diagnosed with lung adenocarcinoma who was found to harbor a rare germline missense variant in exon 21 of EGFR: NM_005228.5(EGFR):c.2527G>A (p.V843I). In the tumor, this variant (Cosmic ID COSV51767379) was accompanied by a secondary, known pathogenic EGFR variant in cis, also occurring in exon 21, c.2573T>G (p.L858R) (Cosmic ID 6224). Her mother was previously diagnosed with poorly differentiated lung carcinoma and her tumor was also found to harbour the p.V843I variant but no other pathogenic variants. Notably, the proband's sister, diagnosed with a lung carcinoma with sarcomatous features at age 44, did not carry this variant or any other somatic or germline EGFR variants. CONCLUSION: This is the second report of familial lung adenocarcinoma associated with the germline p.V843I variant, which remains classified as a variant of uncertain significance. The lack of segregation of this variant in the proband's affected sister illustrates the complexity with evaluating lung cancer predisposition factors. Currently, there is a paucity of data regarding the therapeutic outcomes of patients with tumors expressing this rare germline variant, therefore we propose an algorithm for the identification of at-risk individuals and families as the first step for their personalized management.


Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Female , Humans , Adult , Middle Aged , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Protein Kinase Inhibitors/therapeutic use , ErbB Receptors/genetics , Adenocarcinoma of Lung/drug therapy , Lung/pathology , Mutation
3.
Curr Oncol ; 30(4): 3989-3997, 2023 03 31.
Article En | MEDLINE | ID: mdl-37185415

The detection of gene fusions by RNA-based next-generation sequencing (NGS) is an emerging method in clinical genetic laboratories for oncology biomarker testing to direct targeted therapy selections. A recent Canadian study (CANTRK study) comparing the detection of NTRK gene fusions on different NGS assays to determine subjects' eligibility for tyrosine kinase TRK inhibitor therapy identified the need for recommendations for best practices for laboratory testing to optimize RNA-based NGS gene fusion detection. To develop consensus recommendations, representatives from 17 Canadian genetic laboratories participated in working group discussions and the completion of survey questions about RNA-based NGS. Consensus recommendations are presented for pre-analytic, analytic and reporting aspects of gene fusion detection by RNA-based NGS.


Neoplasms , Receptor, trkA , Humans , Receptor, trkA/genetics , Receptor, trkA/therapeutic use , Neoplasms/drug therapy , RNA/therapeutic use , Consensus , Oncogene Proteins, Fusion/genetics , Canada , High-Throughput Nucleotide Sequencing , Gene Fusion
4.
J Mol Diagn ; 25(3): 168-174, 2023 03.
Article En | MEDLINE | ID: mdl-36586421

The Canadian NTRK (CANTRK) study is an interlaboratory comparison ring study to optimize testing for neurotrophic receptor tyrosine kinase (NTRK) fusions in Canadian laboratories. Sixteen diagnostic laboratories used next-generation sequencing (NGS) for NTRK1, NTRK2, or NTRK3 fusions. Each laboratory received 12 formalin-fixed, paraffin-embedded tumor samples with unique NTRK fusions and two control non-NTRK fusion samples (one ALK and one ROS1). Laboratories used validated protocols for NGS fusion detection. Panels included Oncomine Comprehensive Assay v3, Oncomine Focus Assay, Oncomine Precision Assay, AmpliSeq for Illumina Focus, TruSight RNA Pan-Cancer Panel, FusionPlex Lung, and QIAseq Multimodal Lung. One sample was withdrawn from analysis because of sample quality issues. Of the remaining 13 samples, 6 of 11 NTRK fusions and both control fusions were detected by all laboratories. Two fusions, WNK2::NTRK2 and STRN3::NTRK2, were not detected by 10 laboratories using the Oncomine Comprehensive or Focus panels, due to absence of WNK2 and STRN3 in panel designs. Two fusions, TPM3::NTRK1 and LMNA::NTRK1, were challenging to detect on the AmpliSeq for Illumina Focus panel because of bioinformatics issues. One ETV6::NTRK3 fusion at low levels was not detected by two laboratories using the TruSight Pan-Cancer Panel. Panels detecting all fusions included FusionPlex Lung, Oncomine Precision, and QIAseq Multimodal Lung. The CANTRK study showed competency in detection of NTRK fusions by NGS across different panels in 16 Canadian laboratories and identified key test issues as targets for improvements.


Neoplasms , Receptor, trkA , Humans , Receptor, trkA/analysis , Receptor, trkA/genetics , Protein-Tyrosine Kinases/genetics , Canada , Proto-Oncogene Proteins/genetics , Neoplasms/genetics , High-Throughput Nucleotide Sequencing , Gene Fusion , Sequence Analysis, RNA , Oncogene Proteins, Fusion/genetics , Autoantigens , Calmodulin-Binding Proteins/genetics , Protein Serine-Threonine Kinases/genetics
5.
Curr Oncol ; 29(2): 1107-1116, 2022 02 14.
Article En | MEDLINE | ID: mdl-35200593

BACKGROUND: Recent studies have demonstrated the utility of cell-free tumor DNA (ctDNA) from plasma as an alternative source of genomic material for detection of sensitizing and resistance mutations in NSCLC. We hypothesized that the plasma level of ctDNA is an effective biomarker to provide a non-invasive and thus a less risky method to determine new resistance mutations and to monitor response to treatment and tumor progression in lung cancer patients. METHODS: This prospective cohort study was approved and conducted at the Peter Brojde Lung Cancer Centre, Montreal. Blood was collected in STRECK tubes at four time points. DNA was extracted from plasma, and ctDNA was analyzed for the presence of mutations in the EGFR gene using the COBAS® EGFR v2 qPCR (Roche) test. RESULTS: Overall, 75 pts were enrolled in the study. In total, 23 pts were TKI-naïve, and 52 were already receiving first-line TKI treatment. ctDNA detected the original mutations (OM) in 35/75 (48%) patients. Significantly higher detection rates were observed in TKI-naïve patients compared to the TKI-treated group, 70% versus 37%, respectively (p = 0.012). The detection of the original mutation at the study baseline was a negative predictor of progression-free survival (PFS) and overall survival (OS). The resistance mutation (T790M) was detected in 32/74 (43%) patients. In 27/32 (84%), the T790M was detected during treatment with TKI: in 25/27 patients, T790M was detected at the time of radiologic progression, in one patient, T790M was detected before radiologic progression, and in one patient, T790M was detected four weeks after starting systemic chemotherapy post progression on TKI. At the time of progression, the detection of T790M significantly correlates with the re-appearance of OM (p = 0.001). CONCLUSION: Plasma ctDNA is a noninvasive patient-friendly test that can be used to monitor response to treatment, early progression, and detection of acquired resistant mutations. Monitoring of clearance and re-emergence of driver mutations during TKI treatment effectively identifies progression of the disease. As larger NGS panels are available for ctDNA testing, these findings may also have implications for other biomarkers. The results from ongoing and prospective studies will further determine the utility of plasma testing to diagnose, monitor for disease progression, and guide treatment decisions in NSCLC.


Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Circulating Tumor DNA/genetics , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Prospective Studies , Protein Kinase Inhibitors/therapeutic use
6.
FASEB J ; 36(1): e22092, 2022 01.
Article En | MEDLINE | ID: mdl-34919761

Detection and accurate delineation of tumor is important for the management of head and neck squamous cell carcinoma (HNSCC) but is challenging with current imaging techniques. In this study, we evaluated whether molecular immuno-imaging targeting myeloperoxidase (MPO) activity, an oxidative enzyme secreted by many myeloid innate immune cells, would be superior in detecting tumor extent compared to conventional contrast agent (DTPA-Gd) in a carcinogen-induced immunocompetent HNSCC murine model and corroborated in human surgical specimens. In C57BL/6 mice given 4-nitroquinoline-N-oxide (4-NQO), there was increased MPO activity in the head and neck region as detected by luminol bioluminescence compared to that of the control group. On magnetic resonance imaging, the mean enhancing volume detected by the MPO-targeting agent (MPO-Gd) was higher than that by the conventional agent DTPA-Gd. The tumor volume detected by MPO-Gd strongly correlated with tumor size on histology, and higher MPO-Gd signal corresponded to larger tumor size found by imaging and histology. On the contrary, the tumor volume detected by DTPA-Gd did not correlate as well with tumor size on histology. Importantly, MPO-Gd imaging detected areas not visualized with DTPA-Gd imaging that were confirmed histopathologically to represent early tumor. In human specimens, MPO was similarly associated with tumors, especially at the tumor margins. Thus, molecular immuno-imaging targeting MPO not only detects oxidative immune response in HNSCC, but can better detect and delineate tumor extent than nonselective imaging agents. Thus, our findings revealed that MPO imaging could improve tumor resection as well as be a useful imaging biomarker for tumor progression, and potentially improve clinical management of HNSCC once translated.


Biomarkers, Tumor/metabolism , Head and Neck Neoplasms , Magnetic Resonance Imaging , Molecular Imaging , Neoplasms, Experimental , Quinolones/pharmacology , 4-Nitroquinoline-1-oxide/pharmacology , Animals , Cell Line, Tumor , Female , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/metabolism , Mice , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/metabolism
7.
Diagnostics (Basel) ; 11(12)2021 Dec 16.
Article En | MEDLINE | ID: mdl-34943608

Respiratory screening assays lacking Sample Adequacy Controls (SAC) may result in inadequate sample quality and thus false negative results. The non-adequate samples might represent a significant proportion of the total performed tests, thus resulting in sub-optimal infection control measures with implications that may be critical during pandemic times. The quantitative sample adequacy threshold can be established empirically, measuring the change in the frequency of positive results, as a function of the numerical value of "sample adequacy". Establishing a quantitative threshold for SAC requires a big number/volume of tests to be analyzed in order to have a statistically valid result. Herein, we are offering for the first time clear clinical evidence that a subset of results, which did not pass minimal sample adequacy criteria, have a significantly lower frequency of positivity compared with the "adequate" samples. Flagging these results and/or re-sampling them is a mitigation strategy, which can dramatically improve infection control measures.

8.
Diagnostics (Basel) ; 11(7)2021 Jun 22.
Article En | MEDLINE | ID: mdl-34206413

Sample Adequacy Control (SAC) has critical analytical, clinical and epidemiological value that increases confidence in a negative test result. The SAC is an integral qPCR assay control, which ensures that all pre-analytical and analytical steps are adequate for accurate testing and reporting. As such, a negative SAC with a negative result on pathogen screen specifies that the result should be reported as inconclusive instead of negative. Despite this, many regulatory approved tests do not incorporate SAC into their assay design. Herein, we emphasize the universal value of SAC and offer for the first time, a simple technical strategy to introduce non-competitive SAC which does not interfere with the limit of detection for the screened pathogen. Integration of SAC can provide key benefits towards identifying, isolating, quarantining and contact tracing infected individuals and in turn can improve worldwide efforts in infection control.

9.
J Pathol ; 252(1): 77-87, 2020 09.
Article En | MEDLINE | ID: mdl-32558936

Atypical teratoid rhabdoid tumor (ATRT) is a fatal pediatric malignancy of the central neural system lacking effective treatment options. It belongs to the rhabdoid tumor family and is usually caused by biallelic inactivation of SMARCB1, encoding a key subunit of SWI/SNF chromatin remodeling complexes. Previous studies proposed that SMARCB1 loss drives rhabdoid tumor by promoting cell cycle through activating transcription of cyclin D1 while suppressing p16. However, low cyclin D1 protein expression is observed in most ATRT patient tumors. The underlying mechanism and therapeutic implication of this molecular trait remain unknown. Here, we show that SMARCB1 loss in ATRT leads to the reduction of cyclin D1 expression by upregulating MIR17HG, a microRNA (miRNA) cluster known to generate multiple miRNAs targeting CCND1. Furthermore, we find that this cyclin D1 deficiency in ATRT results in marked in vitro and in vivo sensitivity to the CDK4/6 inhibitor palbociclib as a single agent. Our study identifies a novel genetic interaction between SMARCB1 and MIR17HG in regulating cyclin D1 in ATRT and suggests a rationale to treat ATRT patients with FDA-approved CDK4/6 inhibitors. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Cyclin D1/genetics , Gene Expression Regulation, Neoplastic , Proteins/genetics , Rhabdoid Tumor/genetics , SMARCB1 Protein/genetics , Teratoma/genetics , Cell Line, Tumor , Cell Survival , Cyclin D1/metabolism , Humans , Proteins/metabolism , Rhabdoid Tumor/metabolism , Rhabdoid Tumor/pathology , SMARCB1 Protein/metabolism , Teratoma/metabolism , Teratoma/pathology , Up-Regulation
10.
J Infect Public Health ; 13(7): 991-993, 2020 Jul.
Article En | MEDLINE | ID: mdl-32037201

Quantitative PCR (qPCR) is a leading screening tool, permitting rapid detection of pathogens and the maintenance of effective infection control programs. Unfortunately, qPCR assays frequently do not incorporate Sample Adequacy Control (SAC). A SAC controls for the quantity, quality and adequacy of the specimen. Without SAC, the confidence in a negative result remains questionable and the efficacy of screening is compromised. Ultimately, the exclusion of SAC from qPCR may result in false negative results. One should consider SAC to be an integral critical type of laboratory control; addressing diverse analytical problems, such as sample adequacy, sample processing and assay inhibition. Following distribution of cycle threshold values (Cq) of Influenza A positive results and Cq values of SAC, obtained from nasopharyngeal swabs, we showed that the confidence in a negative result cannot be guaranteed in the presence of a weak positive SAC signal (late Cq values). Herein, we explain why widespread inclusion of sample adequacy control in routine screening is blocked. A protocol and methods for SAC threshold establishment are offered.


Diagnostic Tests, Routine/standards , Influenza, Human/diagnosis , Mass Screening/methods , Diagnostic Tests, Routine/methods , False Negative Reactions , Humans , Molecular Diagnostic Techniques/methods , Nasopharynx , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Specimen Handling/methods
11.
Diagn Microbiol Infect Dis ; 95(2): 113-118, 2019 Oct.
Article En | MEDLINE | ID: mdl-31176521

We describe a laboratory-developed test intended for the detection of acute Clostridium difficile infections (CDI) with the capacity for quantitative sample normalization. The test is based on the detection of the tcdB gene. However, this biomarker is also present among people without symptoms, implying that individuals with diarrhea, not caused by C. difficile may nonetheless test positive. Therefore, clinical diagnosis based on this format of testing can be challenging. In order to improve diagnostic assays capability, tcdB-based quantification methods were suggested as a potential solution, however they did not increase clinical specificity. We report methodology for a dual biomarker monitoring (total bacterial load and tcdB assay), allowing for the calculation of the relative presence of tcdB in the total bacterial population in the tested samples. We believe that this approach is clinically relevant to current assays and can improve CDI testing algorithms.


Clostridioides difficile/isolation & purification , Clostridium Infections/diagnosis , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Bacterial Load , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Clostridioides difficile/genetics , Clostridium Infections/microbiology , Diarrhea/diagnosis , Diarrhea/microbiology , Feces/microbiology , Humans , Immunoenzyme Techniques , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sensitivity and Specificity
12.
Nat Commun ; 10(1): 558, 2019 02 04.
Article En | MEDLINE | ID: mdl-30718512

Inactivating mutations in SMARCA4 (BRG1), a key SWI/SNF chromatin remodelling gene, underlie small cell carcinoma of the ovary, hypercalcemic type (SCCOHT). To reveal its druggable vulnerabilities, we perform kinase-focused RNAi screens and uncover that SMARCA4-deficient SCCOHT cells are highly sensitive to the inhibition of cyclin-dependent kinase 4/6 (CDK4/6). SMARCA4 loss causes profound downregulation of cyclin D1, which limits CDK4/6 kinase activity in SCCOHT cells and leads to in vitro and in vivo susceptibility to CDK4/6 inhibitors. SCCOHT patient tumors are deficient in cyclin D1 yet retain the retinoblastoma-proficient/p16INK4a-deficient profile associated with positive responses to CDK4/6 inhibitors. Thus, our findings indicate that CDK4/6 inhibitors, approved for a breast cancer subtype addicted to CDK4/6 activation, could be repurposed to treat SCCOHT. Moreover, our study suggests a novel paradigm whereby critically low oncogene levels, caused by loss of a driver tumor suppressor, may also be exploited therapeutically.


Carcinoma, Small Cell/drug therapy , Carcinoma, Small Cell/metabolism , Cyclin D1/deficiency , DNA Helicases/metabolism , Nuclear Proteins/metabolism , Protein Kinase Inhibitors/therapeutic use , Transcription Factors/metabolism , Aminopyridines/therapeutic use , Animals , Benzimidazoles/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Chromatin Immunoprecipitation , Cyclin D1/metabolism , DNA Helicases/genetics , Female , Humans , Hypercalcemia/drug therapy , Hypercalcemia/metabolism , Mice , Mice, SCID , Nuclear Proteins/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Piperazines/therapeutic use , Purines/therapeutic use , Pyridines/therapeutic use , RNA, Small Interfering/genetics , Transcription Factors/genetics
13.
Oncotarget ; 9(38): 25166-25180, 2018 May 18.
Article En | MEDLINE | ID: mdl-29861861

Despite efforts for extensive molecular characterization of cancer patients, such as the international cancer genome consortium (ICGC) and the cancer genome atlas (TCGA), the heterogeneous nature of cancer and our limited knowledge of the contextual function of proteins have complicated the identification of targetable genes. Here, we present Aberration Hub Analysis for Cancer (AbHAC) as a novel integrative approach to pinpoint aberration hubs, i.e. individual proteins that interact extensively with genes that show aberrant mutation or expression. Our analysis of the breast cancer data of the TCGA and the renal cancer data from the ICGC shows that aberration hubs are involved in relevant cancer pathways, including factors promoting cell cycle and DNA replication in basal-like breast tumors, and Src kinase and VEGF signaling in renal carcinoma. Moreover, our analysis uncovers novel functionally relevant and actionable targets, among which we have experimentally validated abnormal splicing of spleen tyrosine kinase as a key factor for cell proliferation in renal cancer. Thus, AbHAC provides an effective strategy to uncover novel disease factors that are only identifiable by examining mutational and expression data in the context of biological networks.

14.
Cell Rep ; 23(6): 1639-1650, 2018 05 08.
Article En | MEDLINE | ID: mdl-29742422

Widespread remodeling of the transcriptome is a signature of cancer; however, little is known about the post-transcriptional regulatory factors, including RNA-binding proteins (RBPs) that regulate mRNA stability, and the extent to which RBPs contribute to cancer-associated pathways. Here, by modeling the global change in gene expression based on the effect of sequence-specific RBPs on mRNA stability, we show that RBP-mediated stability programs are recurrently deregulated in cancerous tissues. Particularly, we uncovered several RBPs that contribute to the abnormal transcriptome of renal cell carcinoma (RCC), including PCBP2, ESRP2, and MBNL2. Modulation of these proteins in cancer cell lines alters the expression of pathways that are central to the disease and highlights RBPs as driving master regulators of RCC transcriptome. This study presents a framework for the screening of RBP activities based on computational modeling of mRNA stability programs in cancer and highlights the role of post-transcriptional gene dysregulation in RCC.


Neoplasms/genetics , RNA Stability/genetics , RNA-Binding Proteins/metabolism , Transcriptome/genetics , Carcinoma, Renal Cell/genetics , Cell Cycle/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/genetics , Neoplasm Proteins/metabolism , Protein Biosynthesis , Transcription, Genetic , Up-Regulation/genetics
15.
Sci Transl Med ; 8(369): 369ra177, 2016 12 14.
Article En | MEDLINE | ID: mdl-27974665

Male gender is independently and significantly associated with poor prognosis in melanoma of all clinical stages. The biological underpinnings of this sex difference remain largely unknown, but we hypothesized that gene expression from gonosomes (sex chromosomes) might play an important role. We demonstrate that loss of the inactivated X chromosome in melanomas arising in females is strongly associated with poor distant metastasis-free survival, suggesting a dosage benefit from two X chromosomes. The gonosomal protein phosphatase 2 regulatory subunit B, beta (PPP2R3B) gene is located on the pseudoautosomal region (PAR) of the X chromosome in females and the Y chromosome in males. We observed that, despite its location on the PAR that predicts equal dosage across genders, PPP2R3B expression was lower in males than in females and was independently correlated with poor clinical outcome. PPP2R3B codes for the PR70 protein, a regulatory substrate-recognizing subunit of protein phosphatase 2A. PR70 decreased melanoma growth by negatively interfering with DNA replication and cell cycle progression through its role in stabilizing the cell division cycle 6 (CDC6)-chromatin licensing and DNA replication factor 1 (CDT1) interaction, which delays the firing of origins of DNA replication. Hence, PR70 functionally behaves as an X-linked tumor suppressor gene.


Cell Cycle Proteins/metabolism , Melanoma/metabolism , Nuclear Proteins/metabolism , Protein Phosphatase 2/metabolism , Skin Neoplasms/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Line, Tumor , Chromosome Aberrations , Chromosomes, Human, X , DNA Replication , Disease Progression , Disease-Free Survival , Female , Gene Dosage , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , HEK293 Cells , Humans , Male , Melanoma/genetics , Mice , Neoplasm Metastasis , Neoplasm Transplantation , Prognosis , Protein Phosphatase 2/genetics , Sex Factors
16.
Gastroenterology ; 151(6): 1218-1231, 2016 12.
Article En | MEDLINE | ID: mdl-27578530

BACKGROUND & AIMS: Incidence of and mortality from pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, are almost equivalent, so better treatments are needed. We studied gene expression profiles of PDACs and the functions of genes with altered expression to identify new therapeutic targets. METHODS: We performed microarray analysis to analyze gene expression profiles of 195 PDAC and 41 non-tumor pancreatic tissue samples. We undertook an extensive analysis of the PDAC transcriptome by superimposing interaction networks of proteins encoded by aberrantly expressed genes over signaling pathways associated with PDAC development to identify factors that might alter regulation of these pathways during tumor progression. We performed tissue microarray analysis to verify changes in expression of candidate protein using an independent set of 152 samples (40 nontumor pancreatic tissues, 63 PDAC sections, and 49 chronic pancreatitis samples). We validated the functional relevance of the candidate molecule using RNA interference or pharmacologic inhibitors in pancreatic cancer cell lines and analyses of xenograft tumors in mice. RESULTS: In an analysis of 38,276 human genes and loci, we identified 1676 genes that were significantly up-regulated and 1166 genes that were significantly down-regulated in PDAC compared with nontumor pancreatic tissues. One gene that was up-regulated and associated with multiple signaling pathways that are dysregulated in PDAC was G protein subunit αi2, which has not been previously associated with PDAC. G protein subunit αi2 mediates the effects of dopamine receptor D2 (DRD2) on cyclic adenosine monophosphate signaling; PDAC tissues had a slight but significant increase in DRD2 messenger RNA. Levels of DRD2 protein were substantially increased in PDACs, compared with non-tumor tissues, in tissue microarray analyses. RNA interference knockdown of DRD2 or inhibition with pharmacologic antagonists (pimozide and haloperidol) reduced proliferation of pancreatic cancer cells, induced endoplasmic reticulum stress and apoptosis, and reduced cell migration. RNA interference knockdown of DRD2 in pancreatic tumor cells reduced growth of xenograft tumors in mice, and administration of the DRD2 inhibitor haloperidol to mice with orthotopic xenograft tumors reduced final tumor size and metastasis. CONCLUSIONS: In gene expression profile analysis of PDAC samples, we found the DRD2 signaling pathway to be activated. Inhibition of DRD2 in pancreatic cancer cells reduced proliferation and migration, and slowed growth of xenograft tumors in mice. DRD2 antagonists routinely used for management of schizophrenia might be tested in patients with pancreatic cancer.


Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Receptors, Dopamine D2/genetics , Adult , Aged , Aged, 80 and over , Animals , Apoptosis/drug effects , Carcinoma, Pancreatic Ductal/secondary , Case-Control Studies , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/genetics , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dopamine D2 Receptor Antagonists/pharmacology , Endoplasmic Reticulum Stress/drug effects , Female , Gene Knockdown Techniques , Haloperidol/pharmacology , Humans , Male , Mice , Middle Aged , Pancreatic Neoplasms/pathology , Phosphorylation/drug effects , Pimozide/pharmacology , RNA, Small Interfering , Receptors, Dopamine D2/metabolism , Signal Transduction , Transcriptome , Unfolded Protein Response/drug effects , Up-Regulation , eIF-2 Kinase/metabolism
17.
Oncotarget ; 7(32): 51044-51058, 2016 08 09.
Article En | MEDLINE | ID: mdl-27409837

The HIPPO pathway is an evolutionary conserved regulator of organ size that controls both cell proliferation and death. This pathway has an important role in mediating cell death in response to oxidative stress through the inactivation of Yes-associated protein (YAP) and inhibition of anti-oxidant gene expression. Cells exposed to oxidative stress induce the phosphorylation of the alpha (α) subunit of the translation initiation factor eIF2 at serine 51 (eIF2αP), a modification that leads to the general inhibition of mRNA translation initiation. Under these conditions, increased eIF2αP facilitates the mRNA translation of activating transcription factor 4 (ATF4), which mediates either cell survival and adaptation or cell death under conditions of severe stress. Herein, we demonstrate a functional connection between the HIPPO and eIF2αP-ATF4 pathways under oxidative stress. We demonstrate that ATF4 promotes the stabilization of the large tumor suppressor 1 (LATS1), which inactivates YAP by phosphorylation. ATF4 inhibits the expression of NEDD4.2 and WWP1 mRNAs under pro-oxidant conditions, which encode ubiquitin ligases mediating the proteasomal degradation of LATS1. Increased LATS1 stability is required for the induction of cell death under oxidative stress. Our data reveal a previously unidentified ATF4-dependent pathway in the induction of cell death under oxidative stress via the activation of LATS1 and HIPPO pathway.


Activating Transcription Factor 4/metabolism , Cell Death/physiology , Eukaryotic Initiation Factor-2/metabolism , Oxidative Stress/physiology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology , Animals , Cell Line, Tumor , Gene Expression Regulation/physiology , Hippo Signaling Pathway , Humans , Mice , Mice, Knockout , Phosphorylation , Serine/metabolism
18.
J Virol ; 89(17): 8855-70, 2015 Sep.
Article En | MEDLINE | ID: mdl-26085163

UNLABELLED: When expressed alone at high levels, the human adenovirus E4orf4 protein exhibits tumor cell-specific p53-independent toxicity. A major E4orf4 target is the B55 class of PP2A regulatory subunits, and we have shown recently that binding of E4orf4 inhibits PP2A(B55) phosphatase activity in a dose-dependent fashion by preventing access of substrates (M. Z. Mui et al., PLoS Pathog 9:e1003742, 2013, http://dx.doi.org/10.1371/journal.ppat.1003742). While interaction with B55 subunits is essential for toxicity, E4orf4 mutants exist that, despite binding B55 at high levels, are defective in cell killing, suggesting that other essential targets exist. In an attempt to identify additional targets, we undertook a proteomics approach to characterize E4orf4-interacting proteins. Our findings indicated that, in addition to PP2A(B55) subunits, ASPP-PP1 complex subunits were found among the major E4orf4-binding species. Both the PP2A and ASPP-PP1 phosphatases are known to positively regulate effectors of the Hippo signaling pathway, which controls the expression of cell growth/survival genes by dephosphorylating the YAP transcriptional coactivator. We find here that expression of E4orf4 results in hyperphosphorylation of YAP, suggesting that Hippo signaling is affected by E4orf4 interactions with PP2A(B55) and/or ASPP-PP1 phosphatases. Furthermore, knockdown of YAP1 expression was seen to enhance E4orf4 killing, again consistent with a link between E4orf4 toxicity and inhibition of the Hippo pathway. This effect may in fact contribute to the cancer cell specificity of E4orf4 toxicity, as many human cancer cells rely heavily on the Hippo pathway for their enhanced proliferation. IMPORTANCE: The human adenovirus E4orf4 protein has been known for some time to induce tumor cell-specific death when expressed at high levels; thus, knowledge of its mode of action could be of importance for development of new cancer therapies. Although the B55 form of the phosphatase PP2A has long been known as an essential E4orf4 target, genetic analyses indicated that others must exist. To identify additional E4orf4 targets, we performed, for the first time, a large-scale affinity purification/mass spectrometry analysis of E4orf4 binding partners. Several additional candidates were detected, including key regulators of the Hippo signaling pathway, which enhances cell viability in many cancers, and results of preliminary studies suggested a link between inhibition of Hippo signaling and E4orf4 toxicity.


Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/antagonists & inhibitors , Phosphoproteins/genetics , Protein Phosphatase 2/antagonists & inhibitors , Viral Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Cell Death/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , HEK293 Cells , Hippo Signaling Pathway , Humans , Phosphoproteins/metabolism , Protein Binding/genetics , Protein Binding/physiology , Protein Phosphatase 2/metabolism , Protein Serine-Threonine Kinases/metabolism , RNA Interference , RNA, Small Interfering , Signal Transduction , Transcription Factors , Viral Proteins/metabolism , YAP-Signaling Proteins
19.
Cell Res ; 25(4): 445-58, 2015 Apr.
Article En | MEDLINE | ID: mdl-25656847

Recurrent inactivating mutations in components of SWI/SNF chromatin-remodeling complexes have been identified across cancer types, supporting their roles as tumor suppressors in modulating oncogenic signaling pathways. We report here that SMARCE1 loss induces EGFR expression and confers resistance to MET and ALK inhibitors in non-small cell lung cancers (NSCLCs). We found that SMARCE1 binds to regulatory regions of the EGFR locus and suppresses EGFR transcription in part through regulating expression of Polycomb Repressive Complex component CBX2. Addition of the EGFR inhibitor gefitinib restores the sensitivity of SMARCE1-knockdown cells to MET and ALK inhibitors in NSCLCs. Our findings link SMARCE1 to EGFR oncogenic signaling and suggest targeted treatment options for SMARCE1-deficient tumors.


Carcinoma, Non-Small-Cell Lung/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , ErbB Receptors/biosynthesis , Lung Neoplasms/genetics , Anaplastic Lymphoma Kinase , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/biosynthesis , DNA-Binding Proteins/biosynthesis , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gefitinib , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mutation , Polycomb Repressive Complex 1/biosynthesis , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/genetics , Quinazolines/administration & dosage , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction/drug effects
20.
Cell Cycle ; 13(5): 801-6, 2014.
Article En | MEDLINE | ID: mdl-24401334

The endoplasmic reticulum (ER)-resident protein kinase PERK is a major component of the unfolded protein response (UPR), which promotes the adaptation of cells to various forms of stress. PERK phosphorylates the α subunit of the translation initiation factor eIF2 at serine 51, a modification that plays a key role in the regulation of mRNA translation in stressed cells. Several studies have demonstrated that the PERK-eIF2α phosphorylation pathway maintains insulin biosynthesis and glucose homeostasis, facilitates tumor formation and decreases the efficacy of tumor treatment with chemotherapeutic drugs. Recently, a selective catalytic PERK inhibitor termed GSK2656157 has been developed with anti-tumor properties in mice. Herein, we provide evidence that inhibition of PERK activity by GSK2656157 does not always correlate with inhibition of eIF2α phosphorylation. Also, GSK2656157 does not always mimic the biological effects of the genetic inactivation of PERK. Furthermore, cells treated with GSK2656157 increase eIF2α phosphorylation as a means to compensate for the loss of PERK. Using human tumor cells impaired in eIF2α phosphorylation, we demonstrate that GSK2656157 induces ER stress-mediated death suggesting that the drug acts independent of the inhibition of eIF2α phosphorylation. We conclude that GSK2656157 might be a useful compound to dissect pathways that compensate for the loss of PERK and/or identify PERK pathways that are independent of eIF2α phosphorylation.


Adenine/analogs & derivatives , Antineoplastic Agents/pharmacology , Eukaryotic Initiation Factor-2/metabolism , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , eIF-2 Kinase/metabolism , Adenine/pharmacology , Adenine/therapeutic use , Animals , Cell Death/drug effects , Cell Line , Endoplasmic Reticulum Stress/drug effects , Humans , Indoles/therapeutic use , Mice , Phosphorylation , eIF-2 Kinase/antagonists & inhibitors
...