Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38260287

RESUMEN

Background: Cardiac risk rises during acute SARS-CoV-2 infection and in long COVID syndrome in humans, but the mechanisms behind COVID-19-linked arrhythmias are unknown. This study explores the acute and long term effects of SARS-CoV-2 on the cardiac conduction system (CCS) in a hamster model of COVID-19. Methods: Radiotelemetry in conscious animals was used to non-invasively record electrocardiograms and subpleural pressures after intranasal SARS-CoV-2 infection. Cardiac cytokines, interferon-stimulated gene expression, and macrophage infiltration of the CCS, were assessed at 4 days and 4 weeks post-infection. A double-stranded RNA mimetic, polyinosinic:polycytidylic acid (PIC), was used in vivo and in vitro to activate viral pattern recognition receptors in the absence of SARS-CoV-2 infection. Results: COVID-19 induced pronounced tachypnea and severe cardiac conduction system (CCS) dysfunction, spanning from bradycardia to persistent atrioventricular block, although no viral protein expression was detected in the heart. Arrhythmias developed rapidly, partially reversed, and then redeveloped after the pulmonary infection was resolved, indicating persistent CCS injury. Increased cardiac cytokines, interferon-stimulated gene expression, and macrophage remodeling in the CCS accompanied the electrophysiological abnormalities. Interestingly, the arrhythmia phenotype was reproduced by cardiac injection of PIC in the absence of virus, indicating that innate immune activation was sufficient to drive the response. PIC also strongly induced cytokine secretion and robust interferon signaling in hearts, human iPSC-derived cardiomyocytes (hiPSC-CMs), and engineered heart tissues, accompanied by alterations in electrical and Ca 2+ handling properties. Importantly, the pulmonary and cardiac effects of COVID-19 were blunted by in vivo inhibition of JAK/STAT signaling or by a mitochondrially-targeted antioxidant. Conclusions: The findings indicate that long term dysfunction and immune cell remodeling of the CCS is induced by COVID-19, arising indirectly from oxidative stress and excessive activation of cardiac innate immune responses during infection, with implications for long COVID Syndrome.

2.
J Biol Chem ; 299(3): 102907, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36642184

RESUMEN

The dynamic cycling of O-linked GlcNAc (O-GlcNAc) on and off Ser/Thr residues of intracellular proteins, termed O-GlcNAcylation, is mediated by the conserved enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase. O-GlcNAc cycling is important in homeostatic and stress responses, and its perturbation sensitizes the heart to ischemic and other injuries. Despite considerable progress, many molecular pathways impacted by O-GlcNAcylation in the heart remain unclear. The mitogen-activated protein kinase (MAPK) pathway is a central signaling cascade that coordinates developmental, physiological, and pathological responses in the heart. The developmental or adaptive arm of MAPK signaling is primarily mediated by Erk kinases, while the pathophysiologic arm is mediated by p38 and Jnk kinases. Here, we examine whether O-GlcNAcylation affects MAPK signaling in cardiac myocytes, focusing on Erk1/2 and p38 in basal and hypertrophic conditions induced by phenylephrine. Using metabolic labeling of glycans coupled with alkyne-azide "click" chemistry, we found that Erk1/2 and p38 are O-GlcNAcylated. Supporting the regulation of p38 by O-GlcNAcylation, the OGT inhibitor, OSMI-1, triggers the phosphorylation of p38, an event that involves the NOX2-Ask1-MKK3/6 signaling axis and also the noncanonical activator Tab1. Additionally, OGT inhibition blocks the phenylephrine-induced phosphorylation of Erk1/2. Consistent with perturbed MAPK signaling, OSMI-1-treated cardiomyocytes have a blunted hypertrophic response to phenylephrine, decreased expression of cTnT (key component of the contractile apparatus), and increased expression of maladaptive natriuretic factors Anp and Bnp. Collectively, these studies highlight new roles for O-GlcNAcylation in maintaining a balanced activity of Erk1/2 and p38 MAPKs during hypertrophic growth responses in cardiomyocytes.


Asunto(s)
Miocitos Cardíacos , Transducción de Señal , Humanos , Miocitos Cardíacos/metabolismo , Transducción de Señal/fisiología , Fosforilación , Hipertrofia/metabolismo , Proteínas/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/metabolismo
3.
Cells ; 11(21)2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36359905

RESUMEN

The modification of nuclear, mitochondrial, and cytosolic proteins by O-linked ßN-acetylglucosamine (O-GlcNAc) has emerged as a dynamic and essential post-translational modification of mammalian proteins. O-GlcNAc is cycled on and off over 5000 proteins in response to diverse stimuli impacting protein function and, in turn, epigenetics and transcription, translation and proteostasis, metabolism, cell structure, and signal transduction. Environmental and physiological injury lead to complex changes in O-GlcNAcylation that impact cell and tissue survival in models of heat shock, osmotic stress, oxidative stress, and hypoxia/reoxygenation injury, as well as ischemic reperfusion injury. Numerous mechanisms that appear to underpin O-GlcNAc-mediated survival include changes in chaperone levels, impacts on the unfolded protein response and integrated stress response, improvements in mitochondrial function, and reduced protein aggregation. Here, we discuss the points at which O-GlcNAc is integrated into the cellular stress response, focusing on the roles it plays in the cardiovascular system and in neurodegeneration.


Asunto(s)
Acetilglucosamina , Procesamiento Proteico-Postraduccional , Animales , Acetilglucosamina/metabolismo , Glicosilación , Estrés Oxidativo , Transducción de Señal/fisiología , Proteínas/metabolismo , Mamíferos/metabolismo
4.
JCI Insight ; 6(8)2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33724958

RESUMEN

Although low circulating levels of the vitamin A metabolite, all-trans retinoic acid (ATRA), are associated with increased risk of cardiovascular events and all-cause mortality, few studies have addressed whether cardiac retinoid levels are altered in the failing heart. Here, we showed that proteomic analyses of human and guinea pig heart failure (HF) were consistent with a decline in resident cardiac ATRA. Quantitation of the retinoids in ventricular myocardium by mass spectrometry revealed 32% and 39% ATRA decreases in guinea pig HF and in patients with idiopathic dilated cardiomyopathy (IDCM), respectively, despite ample reserves of cardiac vitamin A. ATRA (2 mg/kg/d) was sufficient to mitigate cardiac remodeling and prevent functional decline in guinea pig HF. Although cardiac ATRA declined in guinea pig HF and human IDCM, levels of certain retinoid metabolic enzymes diverged. Specifically, high expression of the ATRA-catabolizing enzyme, CYP26A1, in human IDCM could dampen prospects for an ATRA-based therapy. Pertinently, a pan-CYP26 inhibitor, talarozole, blunted the impact of phenylephrine on ATRA decline and hypertrophy in neonatal rat ventricular myocytes. Taken together, we submit that low cardiac ATRA attenuates the expression of critical ATRA-dependent gene programs in HF and that strategies to normalize ATRA metabolism, like CYP26 inhibition, may have therapeutic potential.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Tretinoina/metabolismo , Vitamina A/metabolismo , Adulto , Anciano , Animales , Animales Recién Nacidos , Benzotiazoles/farmacología , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Familia 26 del Citocromo P450/antagonistas & inhibidores , Femenino , Regulación de la Expresión Génica , Cobayas , Humanos , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/efectos de los fármacos , Ratas , Tretinoina/farmacología , Triazoles/farmacología , Remodelación Ventricular/efectos de los fármacos , Adulto Joven
5.
J Mol Cell Cardiol ; 139: 176-189, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32004507

RESUMEN

The renal-outer-medullary­potassium (ROMK) channel, mutated in Bartter's syndrome, regulates ion exchange in kidney, but its extra-renal functions remain unknown. Additionally, ROMK was postulated to be the pore-forming subunit of the mitochondrial ATP-sensitive K+ channel (mitoKATP), a mediator of cardioprotection. Using global and cardiomyocyte-specific knockout mice (ROMK-GKO and ROMK-CKO respectively), we characterize the effects of ROMK knockout on mitochondrial ion handling, the response to pharmacological KATP channel modulators, and ischemia/reperfusion (I/R) injury. Mitochondria from ROMK-GKO hearts exhibited a lower threshold for Ca2+-triggered permeability transition pore (mPTP) opening but normal matrix volume changes during oxidative phosphorylation. Isolated perfused ROMK-GKO hearts exhibited impaired functional recovery and increased infarct size when I/R was preceded by an ischemic preconditioning (IPC) protocol. Because ROMK-GKO mice exhibited severe renal defects and cardiac remodeling, we further characterized ROMK-CKO hearts to avoid confounding systemic effects. Mitochondria from ROMK-CKO hearts had unchanged matrix volume responses during oxidative phosphorylation and still swelled upon addition of a mitoKATP opener, but exhibited a lower threshold for mPTP opening, similar to GKO mitochondria. Nevertheless, I/R induced damage was not exacerbated in ROMK-CKO hearts, either ex vivo or in vivo. Lastly, we examined the response of ROMK-CKO hearts to ex vivo I/R injury with or without IPC and found that IPC still protected these hearts, suggesting that cardiomyocyte ROMK does not participate significantly in the cardioprotective pathway elicited by IPC. Collectively, our findings from these novel strains of mice suggest that cardiomyocyte ROMK is not a central mediator of mitoKATP function, although it can affect mPTP activation threshold.


Asunto(s)
Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio de Rectificación Interna/deficiencia , Canales de Potasio/metabolismo , Animales , Animales Recién Nacidos , Sistemas CRISPR-Cas/genética , Calcio/metabolismo , Fenómenos Electrofisiológicos , Edición Génica , Técnicas de Inactivación de Genes , Hemodinámica , Precondicionamiento Isquémico Miocárdico , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Especificidad de Órganos , Perfusión , Fenotipo , Canales de Potasio de Rectificación Interna/metabolismo
6.
J Proteome Res ; 15(9): 3009-28, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27399916

RESUMEN

Here, we examine key regulatory pathways underlying the transition from compensated hypertrophy (HYP) to decompensated heart failure (HF) and sudden cardiac death (SCD) in a guinea pig pressure-overload model by integrated multiome analysis. Relative protein abundances from sham-operated HYP and HF hearts were assessed by iTRAQ LC-MS/MS. Metabolites were quantified by LC-MS/MS or GC-MS. Transcriptome profiles were obtained using mRNA microarrays. The guinea pig HF proteome exhibited classic biosignatures of cardiac HYP, left ventricular dysfunction, fibrosis, inflammation, and extravasation. Fatty acid metabolism, mitochondrial transcription/translation factors, antioxidant enzymes, and other mitochondrial procsses, were downregulated in HF but not HYP. Proteins upregulated in HF implicate extracellular matrix remodeling, cytoskeletal remodeling, and acute phase inflammation markers. Among metabolites, acylcarnitines were downregulated in HYP and fatty acids accumulated in HF. The correlation of transcript and protein changes in HF was weak (R(2) = 0.23), suggesting post-transcriptional gene regulation in HF. Proteome/metabolome integration indicated metabolic bottlenecks in fatty acyl-CoA processing by carnitine palmitoyl transferase (CPT1B) as well as TCA cycle inhibition. On the basis of these findings, we present a model of cardiac decompensation involving impaired nuclear integration of Ca(2+) and cyclic nucleotide signals that are coupled to mitochondrial metabolic and antioxidant defects through the CREB/PGC1α transcriptional axis.


Asunto(s)
Muerte Súbita Cardíaca , Insuficiencia Cardíaca/metabolismo , Metabolómica/métodos , Proteómica/métodos , Animales , Cardiomegalia/metabolismo , Ciclo del Ácido Cítrico , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ácidos Grasos/metabolismo , Cobayas , Hipertensión/complicaciones , Metabolismo de los Lípidos , Metaboloma , Transcriptoma
7.
EMBO Mol Med ; 8(8): 949-66, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27234440

RESUMEN

Follistatin-like 1 (Fstl1) is a secreted protein that is acutely induced in heart following myocardial infarction (MI). In this study, we investigated cell type-specific regulation of Fstl1 and its function in a murine model of MI Fstl1 was robustly expressed in fibroblasts and myofibroblasts in the infarcted area compared to cardiac myocytes. The conditional ablation of Fstl1 in S100a4-expressing fibroblast lineage cells (Fstl1-cfKO mice) led to a reduction in injury-induced Fstl1 expression and increased mortality due to cardiac rupture during the acute phase. Cardiac rupture was associated with a diminished number of myofibroblasts and decreased expression of extracellular matrix proteins. The infarcts of Fstl1-cfKO mice displayed weaker birefringence, indicative of thin and loosely packed collagen. Mechanistically, the migratory and proliferative capabilities of cardiac fibroblasts were attenuated by endogenous Fstl1 ablation. The activation of cardiac fibroblasts by Fstl1 was mediated by ERK1/2 but not Smad2/3 signaling. This study reveals that Fstl1 is essential for the acute repair of the infarcted myocardium and that stimulation of early fibroblast activation is a novel function of Fstl1.


Asunto(s)
Fibroblastos/fisiología , Proteínas Relacionadas con la Folistatina/metabolismo , Infarto del Miocardio/complicaciones , Infarto del Miocardio/patología , Rotura/patología , Animales , Modelos Animales de Enfermedad , Endopeptidasas , Folistatina , Proteínas Relacionadas con la Folistatina/deficiencia , Gelatinasas , Proteínas de la Membrana , Ratones , Ratones Noqueados , Serina Endopeptidasas , Análisis de Supervivencia
8.
Front Physiol ; 5: 301, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25228883

RESUMEN

Lysine modifications have been studied extensively in the nucleus, where they play pivotal roles in gene regulation and constitute one of the pillars of epigenetics. In the cytoplasm, they are critical to proteostasis. However, in the last decade we have also witnessed the emergence of mitochondria as a prime locus for post-translational modification (PTM) of lysine thanks, in large measure, to evolving proteomic techniques. Here, we review recent work on evolving set of PTM that arise from the direct reaction of lysine residues with energized metabolic thioester-coenzyme A intermediates, including acetylation, succinylation, malonylation, and glutarylation. We highlight the evolutionary conservation, kinetics, stoichiometry, and cross-talk between members of this emerging family of PTMs. We examine the impact on target protein function and regulation by mitochondrial sirtuins. Finally, we spotlight work in the heart and cardiac mitochondria, and consider the roles acetylation and other newly-found modifications may play in heart disease.

9.
J Clin Invest ; 124(5): 2099-112, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24713652

RESUMEN

Brown adipose tissue (BAT) is a highly vascularized organ with abundant mitochondria that produce heat through uncoupled respiration. Obesity is associated with a reduction of BAT function; however, it is unknown how obesity promotes dysfunctional BAT. Here, using a murine model of diet-induced obesity, we determined that obesity causes capillary rarefaction and functional hypoxia in BAT, leading to a BAT "whitening" phenotype that is characterized by mitochondrial dysfunction, lipid droplet accumulation, and decreased expression of Vegfa. Targeted deletion of Vegfa in adipose tissue of nonobese mice resulted in BAT whitening, supporting a role for decreased vascularity in obesity-associated BAT. Conversely, introduction of VEGF-A specifically into BAT of obese mice restored vascularity, ameliorated brown adipocyte dysfunction, and improved insulin sensitivity. The capillary rarefaction in BAT that was brought about by obesity or Vegfa ablation diminished ß-adrenergic signaling, increased mitochondrial ROS production, and promoted mitophagy. These data indicate that overnutrition leads to the development of a hypoxic state in BAT, causing it to whiten through mitochondrial dysfunction and loss. Furthermore, these results link obesity-associated BAT whitening to impaired systemic glucose metabolism.


Asunto(s)
Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/irrigación sanguínea , Mitocondrias/metabolismo , Obesidad/metabolismo , Obesidad/patología , Adipocitos Marrones/patología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Glucosa/genética , Glucosa/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Hipoxia/patología , Hipoxia/fisiopatología , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Mitofagia/genética , Obesidad/genética , Obesidad/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética
10.
Circ Res ; 111(8): 1012-26, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22904094

RESUMEN

RATIONALE: At birth, there is a switch from placental to pulmonary circulation and the heart commences its aerobic metabolism. In cardiac myocytes, this transition is marked by increased mitochondrial biogenesis and remodeling of the intracellular architecture. The mechanisms governing the formation of new mitochondria and their expansion within myocytes remain largely unknown. Mitofusins (Mfn-1 and Mfn-2) are known regulators of mitochondrial networks, but their role during perinatal maturation of the heart has yet to be examined. OBJECTIVE: The objective of this study was to determine the significance of mitofusins during early postnatal cardiac development. METHODS AND RESULTS: We genetically inactivated Mfn-1 and Mfn-2 in midgestational and postnatal cardiac myocytes using a loxP/Myh6-cre approach. At birth, cardiac morphology and function of double-knockout (DKO) mice are normal. At that time, DKO mitochondria increase in numbers, appear to be spherical and heterogeneous in size, but exhibit normal electron density. By postnatal day 7, the mitochondrial numbers in DKO myocytes remain abnormally expanded and many lose matrix components and membrane organization. At this time point, DKO mice have developed cardiomyopathy. This leads to a rapid decline in survival and all DKO mice die before 16 days of age. Gene expression analysis of DKO hearts shows that mitochondria biogenesis genes are downregulated, the mitochondrial DNA is reduced, and mitochondrially encoded transcripts and proteins are also reduced. Furthermore, mitochondrial turnover pathways are dysregulated. CONCLUSIONS: Our findings establish that Mfn-1 and Mfn-2 are essential in mediating mitochondrial remodeling during postnatal cardiac development, a time of dramatic transitions in the bioenergetics and growth of the heart.


Asunto(s)
GTP Fosfohidrolasas/fisiología , Corazón/embriología , Corazón/crecimiento & desarrollo , Miocitos Cardíacos/fisiología , Animales , Animales Recién Nacidos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , GTP Fosfohidrolasas/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Corazón/fisiología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Mitocondrias/patología , Mitocondrias/fisiología , Mitocondrias/ultraestructura , Miocardio/patología , Miocitos Cardíacos/patología , Miocitos Cardíacos/ultraestructura , Miofibrillas/patología , Miofibrillas/fisiología , Miofibrillas/ultraestructura , Tasa de Supervivencia
11.
Am J Physiol Heart Circ Physiol ; 303(3): H243-55, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22636681

RESUMEN

Mitofusins (Mfn-1 and Mfn-2) are transmembrane proteins that bind and hydrolyze guanosine 5'-triphosphate to bring about the merging of adjacent mitochondrial membranes. This event is necessary for mitochondrial fusion, a biological process that is critical for organelle function. The broad effects of mitochondrial fusion on cell bioenergetics have been extensively studied, whereas the local effects of mitofusin activity on the structure and integrity of the fusing mitochondrial membranes have received relatively little attention. From the study of fusogenic proteins, theoretical models, and simulations, it has been noted that the fusion of biological membranes is associated with local perturbations on the integrity of the membrane that present in the form of lipidic holes which open on the opposing bilayers. These lipidic holes represent obligate intermediates that make the fusion process thermodynamically more favorable and at the same time induce leakage to the fusing membranes. In this perspectives article we present the relevant evidence selected from a spectrum of membrane fusion/leakage models and attempt to couple this information with observations conducted with cardiac myocytes or mitochondria deficient in Mfn-1 and Mfn-2. More specifically, we argue in favor of a situation whereby mitochondrial fusion in cardiac myocytes is coupled with outer mitochondrial membrane destabilization that is opportunistically employed during the process of mitochondrial permeability transition. We hope that these insights will initiate research on this new hypothesis of mitochondrial permeability transition regulation, a poorly understood mitochondrial function with significant consequences on myocyte survival.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Fusión de Membrana , Mitocondrias Cardíacas/enzimología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/enzimología , Animales , Supervivencia Celular , Metabolismo Energético , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias Cardíacas/patología , Membranas Mitocondriales/patología , Poro de Transición de la Permeabilidad Mitocondrial , Miocitos Cardíacos/patología , Permeabilidad , Proteína X Asociada a bcl-2/metabolismo
12.
J Biol Chem ; 287(24): 20321-32, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22511781

RESUMEN

The outer mitochondrial membrane GTPase mitofusin 2 (Mfn2) is known to regulate endoplasmic reticulum (ER) shape in addition to its mitochondrial fusion effects. However, its role in ER stress is unknown. We report here that induction of ER stress with either thapsigargin or tunicamycin in mouse embryonic fibroblasts leads to up-regulation of Mfn2 mRNA and protein levels with no change in the expression of the mitochondrial shaping factors Mfn1, Opa1, Drp1, and Fis1. Genetic deletion of Mfn2 but not Mfn1 in mouse embryonic fibroblasts or cardiac myocytes in mice led to an increase in the expression of the ER chaperone proteins. Genetic ablation of Mfn2 in mouse embryonic fibroblasts amplified ER stress and exacerbated ER stress-induced apoptosis. Deletion of Mfn2 delayed translational recovery through prolonged eIF2α phosphorylation associated with decreased GADD34 and p58(IPK) expression and elevated C/EBP homologous protein induction at late time points. These changes in the unfolded protein response were coupled to increased cell death reflected by augmented caspase 3/7 activity, lactate dehydrogenase release from cells, and an increase in propidium iodide-positive nuclei in response to thapsigargin or tunicamycin treatment. In contrast, genetic deletion of Mfn1 did not affect ER stress-mediated increase in ER chaperone synthesis or eIF2α phosphorylation. Additionally, ER stress-induced C/EBP homologous protein, GADD34, and p58(IPK) induction and cell death were not affected by loss of Mfn1. We conclude that Mfn2 but not Mfn1 is an ER stress-inducible protein that is required for the proper temporal sequence of the ER stress response.


Asunto(s)
Embrión de Mamíferos/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , GTP Fosfohidrolasas/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Muerte Celular , Células Cultivadas , Embrión de Mamíferos/citología , Retículo Endoplásmico/genética , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Fibroblastos/citología , GTP Fosfohidrolasas/genética , Eliminación de Gen , Ratones , Fosforilación/fisiología , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 302(1): H167-79, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22037195

RESUMEN

Molecular studies examining the impact of mitochondrial morphology on the mammalian heart have previously focused on dynamin related protein-1 (Drp-1) and mitofusin-2 (Mfn-2), while the role of the other mitofusin isoform, Mfn-1, has remained largely unexplored. In the present study, we report the generation and initial characterization of cardiomyocyte-specific Mfn-1 knockout (Mfn-1 KO) mice. Using electron microscopic analysis, we detect a greater prevalence of small, spherical mitochondria in Mfn-1 KO hearts, indicating that the absence of Mfn-1 causes a profound shift in the mitochondrial fusion/fission balance. Nevertheless, Mfn-1 KO mice exhibit normal left-ventricular function, and isolated Mfn-1 KO heart mitochondria display a normal respiratory repertoire. Mfn-1 KO myocytes are protected from mitochondrial depolarization and exhibit improved viability when challenged with reactive oxygen species (ROS) in the form of hydrogen peroxide (H(2)O(2)). Furthermore, in vitro studies detect a blunted response of KO mitochondria to undergo peroxide-induced mitochondrial permeability transition pore opening. These data suggest that Mfn-1 deletion confers protection against ROS-induced mitochondrial dysfunction. Collectively, we suggest that mitochondrial fragmentation in myocytes is not sufficient to induce heart dysfunction or trigger cardiomyocyte death. Additionally, our data suggest that endogenous levels of Mfn-1 can attenuate myocyte viability in the face of an imminent ROS overload, an effect that could be associated with the ability of Mfn-1 to remodel the outer mitochondrial membrane.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Animales , Muerte Celular , Respiración de la Célula , Supervivencia Celular , Células Cultivadas , Citoprotección , GTP Fosfohidrolasas/deficiencia , GTP Fosfohidrolasas/genética , Peróxido de Hidrógeno/metabolismo , Fusión de Membrana , Potencial de la Membrana Mitocondrial , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Transmisión , Microscopía por Video , Mitocondrias Cardíacas/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Tamaño Mitocondrial , Miocitos Cardíacos/ultraestructura , Factores de Tiempo , Transcripción Genética , Función Ventricular Izquierda
14.
Mol Cell Biol ; 31(6): 1309-28, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21245373

RESUMEN

Mitofusin-2 (Mfn-2) is a dynamin-like protein that is involved in the rearrangement of the outer mitochondrial membrane. Research using various experimental systems has shown that Mfn-2 is a mediator of mitochondrial fusion, an evolutionarily conserved process responsible for the surveillance of mitochondrial homeostasis. Here, we find that cardiac myocyte mitochondria lacking Mfn-2 are pleiomorphic and have the propensity to become enlarged. Consistent with an underlying mild mitochondrial dysfunction, Mfn-2-deficient mice display modest cardiac hypertrophy accompanied by slight functional deterioration. The absence of Mfn-2 is associated with a marked delay in mitochondrial permeability transition downstream of Ca(2+) stimulation or due to local generation of reactive oxygen species (ROS). Consequently, Mfn-2-deficient adult cardiomyocytes are protected from a number of cell death-inducing stimuli and Mfn-2 knockout hearts display better recovery following reperfusion injury. We conclude that in cardiac myocytes, Mfn-2 controls mitochondrial morphogenesis and serves to predispose cells to mitochondrial permeability transition and to trigger cell death.


Asunto(s)
Calcio/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/citología , Animales , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/genética , Cardiomegalia/metabolismo , Muerte Celular , Células Cultivadas , GTP Fosfohidrolasas/genética , Eliminación de Gen , Corazón/fisiopatología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Permeabilidad , Ratas , Especies Reactivas de Oxígeno/metabolismo , Ultrasonografía
15.
J Mol Cell Cardiol ; 49(2): 196-209, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20399788

RESUMEN

Cyclooxygenase-1 and -2 are rate-limiting enzymes in the formation of a wide array of bioactive lipid mediators collectively known as prostanoids (prostaglandins, prostacyclins, and thromboxanes). Evidence from clinical trials shows that selective inhibition of the second isoenzyme (cyclooxygenase-2, or Cox-2) is associated with increased risk for serious cardiovascular events and findings from animal-based studies have suggested protective roles of Cox-2 for the heart. To further characterize the function of Cox-2 in the heart, mice with loxP sites flanking exons 4 and 5 of Cox-2 were rendered knockout specifically in cardiac myocytes (Cox-2 CKO mice) via cre-mediated recombination. Baseline cardiac performance of CKO mice remained unchanged and closely resembled that of control mice. Furthermore, myocardial infarct size induced after in vivo ischemia/reperfusion (I/R) injury was comparable between CKO and control mice. In addition, cardiac hypertrophy and function four weeks after transverse aortic constriction (TAC) was found to be similar between the two groups. Assessment of Cox-2 expression in purified adult cardiac cells isolated after I/R and TAC suggests that the dominant source of Cox-2 is found in the non-myocyte fraction. In conclusion, our animal-based analyses together with the cell-based observations portray a limited role of cardiomyocyte-produced Cox-2 at baseline and in the context of ischemic or hemodynamic challenge.


Asunto(s)
Ciclooxigenasa 2/deficiencia , Pruebas de Función Cardíaca , Corazón/fisiopatología , Modelos Genéticos , Miocitos Cardíacos/enzimología , Estrés Fisiológico , Animales , Cardiomegalia/complicaciones , Cardiomegalia/enzimología , Cardiomegalia/fisiopatología , Ciclooxigenasa 2/metabolismo , Eliminación de Gen , Ventrículos Cardíacos/enzimología , Ventrículos Cardíacos/fisiopatología , Integrasas/metabolismo , Ratones , Ratones Noqueados , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/enzimología , Miocardio/patología , Especificidad de Órganos , Presión , Recombinación Genética/genética , Sístole/fisiología
16.
Am J Hypertens ; 23(5): 562-8, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20186129

RESUMEN

BACKGROUND: The cardioprotective benefits of bradykinin are attributable to activation of its B(2) receptor (B(2)R)-mediated actions and abolished by B(2)R antagonists. The current experiments evaluated the cardioprotective potential of a potent, long-acting B(2)R-selective agonist peptide analogue of bradykinin, the compound NG291. METHODS: We compared the extent of cardiac tissue damage and remodeling and expression pattern of selected genes in mice submitted to acute myocardial infarct (MI) and treated for 1 week with either NG291 [Hyp(3),Thi(5),(N)Chg(7),Thi(8)]-bradykinin or with saline delivered via osmotic minipump. RESULTS: Active treatment resulted in better ejection fraction (EF) 69 +/- 1% vs. 61 +/- 3.1% (P = 0.01), (vs. 85 +/- 1.3% in sham-operated controls), fractional shortening (FS) 38 +/- 4% vs. 32 +/- 8% (NS) (vs. 53 +/- 1.2 in sham-operated controls), and fewer markers of myocyte apoptosis (TUNEL-positive nuclei 4.9 +/- 1.1% vs. 9.7 +/- 0.03%, P = 0.03). Systolic blood pressure (SBP) at end point was normal at 110 +/- 4.2 in actively treated mice, but tended to be lower at 104 +/- 4.7 mm Hg in saline controls with decreased cardiac systolic capacity. Expression patterns of selected genes to factors related to tissue injury, inflammation, and metabolism (i.e., the B(1)R, B(2)R, endothelial nitric oxide synthase (eNOS), TNF-alpha, cardiomyopathy-associated 3 (Cmya3), and pyruvate dehydrogenase kinase isoenzyme 4 (PDK4)) showed that acute MI induced significant upregulation of these genes, and active treatment prevented or attenuated this upregulation, whereas the B(2)R agonist itself produced no difference in the myocardium of sham-operated mice. CONCLUSIONS: Treatment with a selective B(2)R agonist initiated at the time of induction of acute MI in mice had a beneficial effect on cardiac function, tissue remodeling, and inflammation-related tissue gene expression, which may explain its structural and functional benefits.


Asunto(s)
Bradiquinina/análogos & derivados , Cardiotónicos/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Receptor de Bradiquinina B2/agonistas , Animales , Apoptosis/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Cardiotónicos/farmacología , Proteínas del Citoesqueleto , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Proteínas con Dominio LIM , Masculino , Ratones , Ratones Endogámicos , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Nucleares/metabolismo , Volumen Sistólico/efectos de los fármacos , Volumen Sistólico/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
17.
Circulation ; 120(16): 1606-15, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19805648

RESUMEN

BACKGROUND: Transforming growth factor-beta family cytokines have diverse actions in the maintenance of cardiac homeostasis. Activin A is a member of this family whose regulation and function in heart are not well understood at a molecular level. Follistatin-like 3 (Fstl3) is an extracellular regulator of activin A protein, and its function in the heart is also unknown. METHODS AND RESULTS: We analyzed the expression of various transforming growth factor-beta superfamily cytokines and their binding partners in mouse heart. Activin betaA and Fstl3 were upregulated in models of myocardial injury. Overexpression of activin A with an adenoviral vector (Ad-actbetaA) or treatment with recombinant activin A protein protected cultured myocytes from hypoxia/reoxygenation-induced apoptosis. Systemic overexpression of activin A in mice by intravenous injection of Ad-actbetaA protected hearts from ischemia/reperfusion injury. Activin A induced the expression of Bcl-2, and ablation of Bcl-2 by small interfering RNA abrogated its protective action in myocytes. The protective effect of activin A on cultured myocytes was abolished by treatment with Fstl3 or by a pharmacological activin receptor-like kinase inhibitor. Cardiac-specific Fstl3 knockout mice showed significantly smaller infarcts after ischemia/reperfusion injury that was accompanied by reduced apoptosis. CONCLUSIONS: Activin A and Fstl3 are induced in heart by myocardial stress. Activin A protects myocytes from death, and this activity is antagonized by Fstl3. Thus, the relative expression levels of these factors after injury is a determinant of cell survival in the heart.


Asunto(s)
Activinas/metabolismo , Proteínas Relacionadas con la Folistatina/metabolismo , Isquemia Miocárdica/etiología , Miocardio/metabolismo , Receptores de Activinas/farmacología , Activinas/administración & dosificación , Activinas/antagonistas & inhibidores , Activinas/genética , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Hipoxia de la Célula , Supervivencia Celular , Células Cultivadas , Vasos Coronarios , Susceptibilidad a Enfermedades , Proteínas Relacionadas con la Folistatina/genética , Proteínas Relacionadas con la Folistatina/farmacología , Técnicas de Transferencia de Gen , Ventrículos Cardíacos , Inyecciones Intravenosas , Ligadura , Masculino , Ratones , Ratones Noqueados , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Oxígeno/farmacología , Ratas , Proteínas Recombinantes/administración & dosificación , Regulación hacia Arriba
18.
Circ Res ; 102(1): 16-31, 2008 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-18174472

RESUMEN

The Forkhead family of transcription factors modulates a wide variety of cellular functions in cardiovascular tissues. In this review article, we discuss recent advances in our understanding of regulation provided by the forkhead factors in cardiac myocytes and vascular cells.


Asunto(s)
Sistema Cardiovascular/citología , Sistema Cardiovascular/metabolismo , Factores de Transcripción Forkhead/fisiología , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/metabolismo , Cardiomegalia/etiología , Corazón/crecimiento & desarrollo , Humanos , Linfangiogénesis , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...