Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Curr Dev Nutr ; 6(9): nzac123, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36157849

RESUMEN

The relation among the various causal factors of obesity is not well understood, and there remains a lack of viable data to advance integrated, systems models of its etiology. The collection of big data has begun to allow the exploration of causal associations between behavior, built environment, and obesity-relevant health outcomes. Here, the traditional epidemiologic and emerging big data approaches used in obesity research are compared, describing the research questions, needs, and outcomes of 3 broad research domains: eating behavior, social food environments, and the built environment. Taking tangible steps at the intersection of these domains, the recent European Union project "BigO: Big data against childhood obesity" used a mobile health tool to link objective measurements of health, physical activity, and the built environment. BigO provided learning on the limitations of big data, such as privacy concerns, study sampling, and the balancing of epidemiologic domain expertise with the required technical expertise. Adopting big data approaches will facilitate the exploitation of data concerning obesity-relevant behaviors of a greater variety, which are also processed at speed, facilitated by mobile-based data collection and monitoring systems, citizen science, and artificial intelligence. These approaches will allow the field to expand from causal inference to more complex, systems-level predictive models, stimulating ambitious and effective policy interventions.

2.
Appetite ; 176: 106096, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35644308

RESUMEN

The progress in artificial intelligence and machine learning algorithms over the past decade has enabled the development of new methods for the objective measurement of eating, including both the measurement of eating episodes as well as the measurement of in-meal eating behavior. These allow the study of eating behavior outside the laboratory in free-living conditions, without the need for video recordings and laborious manual annotations. In this paper, we present a high-level overview of our recent work on intake monitoring using a smartwatch, as well as methods using an in-ear microphone. We also present evaluation results of these methods in challenging, real-world datasets. Furthermore, we discuss use-cases of such intake monitoring tools for advancing research in eating behavior, for improving dietary monitoring, as well as for developing evidence-based health policies. Our goal is to inform researchers and users of intake monitoring methods regarding (i) the development of new methods based on commercially available devices, (ii) what to expect in terms of effectiveness, and (iii) how these methods can be used in research as well as in practical applications.


Asunto(s)
Inteligencia Artificial , Conducta Alimentaria , Algoritmos , Dieta , Humanos , Comidas
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7182-7185, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892757

RESUMEN

While automatic tracking and measuring of our physical activity is a well established domain, not only in research but also in commercial products and every-day lifestyle, automatic measurement of eating behavior is significantly more limited. Despite the abundance of methods and algorithms that are available in bibliography, commercial solutions are mostly limited to digital logging applications for smart-phones. One factor that limits the adoption of such solutions is that they usually require specialized hardware or sensors. Based on this, we evaluate the potential for estimating the weight of consumed food (per bite) based only on the audio signal that is captured by commercial ear buds (Samsung Galaxy Buds). Specifically, we examine a combination of features (both audio and non-audio features) and trainable estimators (linear regression, support vector regression, and neural-network based estimators) and evaluate on an in-house dataset of 8 participants and 4 food types. Results indicate good potential for this approach: our best results yield mean absolute error of less than 1 g for 3 out of 4 food types when training food-specific models, and 2.1 g when training on all food types together, both of which improve over an existing literature approach.


Asunto(s)
Algoritmos , Conducta Alimentaria , Alimentos , Humanos , Redes Neurales de la Computación
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7186-7189, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892758

RESUMEN

The importance of automated and objective monitoring of dietary behavior is becoming increasingly accepted. The advancements in sensor technology along with recent achievements in machine-learning-based signal-processing algorithms have enabled the development of dietary monitoring solutions that yield highly accurate results. A common bottleneck for developing and training machine learning algorithms is obtaining labeled data for training supervised algorithms, and in particular ground truth annotations. Manual ground truth annotation is laborious, cumbersome, can sometimes introduce errors, and is sometimes impossible in free-living data collection. As a result, there is a need to decrease the labeled data required for training. Additionally, unlabeled data, gathered in-the-wild from existing wearables (such as Bluetooth earbuds) can be used to train and fine-tune eating-detection models. In this work, we focus on training a feature extractor for audio signals captured by an in-ear microphone for the task of eating detection in a self-supervised way. We base our approach on the SimCLR method for image classification, proposed by Chen et al. from the domain of computer vision. Results are promising as our self-supervised method achieves similar results to supervised training alternatives, and its overall effectiveness is comparable to current state-of-the-art methods. Code is available at https://github.com/mug-auth/ssl-chewing.


Asunto(s)
Algoritmos , Redes Neurales de la Computación
5.
JMIR Mhealth Uhealth ; 9(7): e26290, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34048353

RESUMEN

BACKGROUND: Obesity is a major public health problem globally and in Europe. The prevalence of childhood obesity is also soaring. Several parameters of the living environment are contributing to this increase, such as the density of fast food retailers, and thus, preventive health policies against childhood obesity must focus on the environment to which children are exposed. Currently, there are no systems in place to objectively measure the effect of living environment parameters on obesogenic behaviors and obesity. The H2020 project "BigO: Big Data Against Childhood Obesity" aims to tackle childhood obesity by creating new sources of evidence based on big data. OBJECTIVE: This paper introduces the Obesity Prevention dashboard (OPdashboard), implemented in the context of BigO, which offers an interactive data platform for the exploration of objective obesity-related behaviors and local environments based on the data recorded using the BigO mHealth (mobile health) app. METHODS: The OPdashboard, which can be accessed on the web, allows for (1) the real-time monitoring of children's obesogenic behaviors in a city area, (2) the extraction of associations between these behaviors and the local environment, and (3) the evaluation of interventions over time. More than 3700 children from 33 schools and 2 clinics in 5 European cities have been monitored using a custom-made mobile app created to extract behavioral patterns by capturing accelerometer and geolocation data. Online databases were assessed in order to obtain a description of the environment. The dashboard's functionality was evaluated during a focus group discussion with public health experts. RESULTS: The preliminary association outcomes in 2 European cities, namely Thessaloniki, Greece, and Stockholm, Sweden, indicated a correlation between children's eating and physical activity behaviors and the availability of food-related places or sports facilities close to schools. In addition, the OPdashboard was used to assess changes to children's physical activity levels as a result of the health policies implemented to decelerate the COVID-19 outbreak. The preliminary outcomes of the analysis revealed that in urban areas the decrease in physical activity was statistically significant, while a slight increase was observed in the suburbs. These findings indicate the importance of the availability of open spaces for behavioral change in children. Discussions with public health experts outlined the dashboard's potential to aid in a better understanding of the interplay between children's obesogenic behaviors and the environment, and improvements were suggested. CONCLUSIONS: Our analyses serve as an initial investigation using the OPdashboard. Additional factors must be incorporated in order to optimize its use and obtain a clearer understanding of the results. The unique big data that are available through the OPdashboard can lead to the implementation of models that are able to predict population behavior. The OPdashboard can be considered as a tool that will increase our understanding of the underlying factors in childhood obesity and inform the design of regional interventions both for prevention and treatment.


Asunto(s)
COVID-19 , Niño , Europa (Continente) , Grecia , Humanos , SARS-CoV-2 , Suecia
6.
Nutrients ; 13(3)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803093

RESUMEN

Fast self-reported eating rate (SRER) has been associated with increased adiposity in children and adults. No studies have been conducted among high-school students, and SRER has not been validated vs. objective eating rate (OBER) in such populations. The objectives were to investigate (among high-school student populations) the association between OBER and BMI z-scores (BMIz), the validity of SRER vs. OBER, and potential differences in BMIz between SRER categories. Three studies were conducted. Study 1 included 116 Swedish students (mean ± SD age: 16.5 ± 0.8, 59% females) who were eating school lunch. Food intake and meal duration were objectively recorded, and OBER was calculated. Additionally, students provided SRER. Study 2 included students (n = 50, mean ± SD age: 16.7 ± 0.6, 58% females) from Study 1 who ate another objectively recorded school lunch. Study 3 included 1832 high-school students (mean ± SD age: 15.8 ± 0.9, 51% females) from Sweden (n = 748) and Greece (n = 1084) who provided SRER. In Study 1, students with BMIz ≥ 0 had faster OBER vs. students with BMIz < 0 (mean difference: +7.7 g/min or +27%, p = 0.012), while students with fast SRER had higher OBER vs. students with slow SRER (mean difference: +13.7 g/min or +56%, p = 0.001). However, there was "minimal" agreement between SRER and OBER categories (κ = 0.31, p < 0.001). In Study 2, OBER during lunch 1 had a "large" correlation with OBER during lunch 2 (r = 0.75, p < 0.001). In Study 3, fast SRER students had higher BMIz vs. slow SRER students (mean difference: 0.37, p < 0.001). Similar observations were found among both Swedish and Greek students. For the first time in high-school students, we confirm the association between fast eating and increased adiposity. Our validation analysis suggests that SRER could be used as a proxy for OBER in studies with large sample sizes on a group level. With smaller samples, OBER should be used instead. To assess eating rate on an individual level, OBER can be used while SRER should be avoided.


Asunto(s)
Índice de Masa Corporal , Encuestas sobre Dietas/estadística & datos numéricos , Conducta Alimentaria , Autoinforme/estadística & datos numéricos , Estudiantes/estadística & datos numéricos , Factores de Tiempo , Adolescente , Peso Corporal , Estudios Transversales , Ingestión de Alimentos , Femenino , Grecia/epidemiología , Humanos , Almuerzo , Masculino , Obesidad Infantil/epidemiología , Obesidad Infantil/etiología , Reproducibilidad de los Resultados , Suecia/epidemiología
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5296-5299, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33019179

RESUMEN

Obesity is currently affecting very large portions of the global population. Effective prevention and treatment starts at the early age and requires objective knowledge of population-level behavior on the region/neighborhood scale. To this end, we present a system for extracting and collecting behavioral information on the individual-level objectively and automatically. The behavioral information is related to physical activity, types of visited places, and transportation mode used between them. The system employs indicator-extraction algorithms from the literature which we evaluate on publicly available datasets. The system has been developed and integrated in the context of the EU-funded BigO project that aims at preventing obesity in young populations.


Asunto(s)
Ejercicio Físico , Obesidad , Humanos , Obesidad/epidemiología , Características de la Residencia
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5864-5867, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33019308

RESUMEN

Obesity is a complex disease and its prevalence depends on multiple factors related to the local socioeconomic, cultural and urban context of individuals. Many obesity prevention strategies and policies, however, are horizontal measures that do not depend on context-specific evidence. In this paper we present an overview of BigO (http://bigoprogram.eu), a system designed to collect objective behavioral data from children and adolescent populations as well as their environment in order to support public health authorities in formulating effective, context-specific policies and interventions addressing childhood obesity. We present an overview of the data acquisition, indicator extraction, data exploration and analysis components of the BigO system, as well as an account of its preliminary pilot application in 33 schools and 2 clinics in four European countries, involving over 4,200 participants.


Asunto(s)
Obesidad Infantil , Salud Pública , Adolescente , Niño , Europa (Continente) , Humanos , Obesidad Infantil/epidemiología , Instituciones Académicas
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5876-5879, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33019311

RESUMEN

Obesity affects a rising percentage of the children and adolescent population, contributing to decreased quality of life and increased risk for comorbidities. Although the major causes of obesity are known, the obesogenic behaviors manifest as a result of complex interactions of the individual with the living environment. For this reason, addressing childhood obesity remains a challenging problem for public health authorities. The BigO project (https://bigoprogram.eu) relies on large-scale behavioral and environmental data collection to create tools that support policy making and intervention design. In this work, we propose a novel analysis approach for modeling the expected population behavior as a function of the local environment. We experimentally evaluate this approach in predicting the expected physical activity level in small geographic regions using urban environment characteristics. Experiments on data collected from 156 children and adolescents verify the potential of the proposed approach. Specifically, we train models that predict the physical activity level in a region, achieving 81% leave-one-out accuracy. In addition, we exploit the model predictions to automatically visualize heatmaps of the expected population behavior in areas of interest, from which we draw useful insights. Overall, the predictive models and the automatic heatmaps are promising tools in gaining direct perception for the spatial distribution of the population's behavior, with potential uses by public health authorities.


Asunto(s)
Obesidad Infantil , Calidad de Vida , Adolescente , Niño , Ejercicio Físico , Humanos , Obesidad Infantil/epidemiología , Salud Pública
10.
Comput Methods Programs Biomed ; 194: 105485, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32464588

RESUMEN

BACKGROUND & OBJECTIVE: The study of eating behavior has made significant progress towards understanding the association of specific eating behavioral patterns with medical problems, such as obesity and eating disorders. Smartphones have shown promise in monitoring and modifying unhealthy eating behavior patterns, often with the help of sensors for behavior data recording. However, when it comes to semi-controlled deployment settings, smartphone apps that facilitate eating behavior data collection are missing. To fill this gap, the present work introduces ASApp, one of the first smartphone apps to support researchers in the collection of heterogeneous objective (sensor-acquired) and subjective (self-reported) eating behavior data in an integrated manner from large-scale, naturalistic human subject research (HSR) studies. METHODS: This work presents the overarching and deployment-specific requirements that have driven the design of ASApp, followed by the heterogeneous eating behavior dataset that is collected and the employed data collection protocol. The collected dataset combines objective and subjective behavior information, namely (a) dietary self-assessment information, (b) the food weight timeseries throughout an entire meal (using a portable weight scale connected wirelessly), (c) a photograph of the meal, and (d) a series of quantitative eating behavior indicators, mainly calculated from the food weight timeseries. The designed data collection protocol is quick, straightforward, robust and capable of satisfying the requirement of semi-controlled HSR deployment. RESULTS: The implemented functionalities of ASApp for research assistants and study participants are presented in detail along with the corresponding user interfaces. ASApp has been successfully deployed for data collection in an in-house testing study and the SPLENDID study, i.e., a real-life semi-controlled HSR study conducted in the cafeteria of a Swedish high-school in the context of an EC-funded research project. The two deployment studies are described and the promising results from the evaluation of the app with respect to attractiveness, usability, and technical soundness are discussed. Access details for ASApp are also provided. CONCLUSIONS: This work presents the requirement elucidation, design, implementation and evaluation of a novel smartphone application that supports researchers in the integrated collection of a concise yet rich set of heterogeneous eating behavior data for semi-controlled HSR.


Asunto(s)
Trastornos de Alimentación y de la Ingestión de Alimentos , Aplicaciones Móviles , Conducta Alimentaria , Humanos , Obesidad , Teléfono Inteligente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA