Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Sci ; 172: 106151, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217210

RESUMEN

In early development, when active pharmaceutical ingredient (API) is in short supply, it would be beneficial to reduce the number of experiments by predicting a suitable L/S ratio before starting the product development. The aim of the study was to decrease development time and the amount of API needed for the process development of high drug load formulations for continuous twin-screw wet granulation (TSWG). Mixer torque rheometry was used as a pre-formulation tool to predict the suitable L/S ratios for granulation experiments. Three different values that were based on the MTR curves, were determined and assessed for their ability to predict the suitable L/S ratio for TSWG. Three APIs (allopurinol, paracetamol and metformin HCl) were used as model substances in high drug load formulations containing 60% drug substance. The MCC-mannitol ratio was varied to assess the optimal composition for the high-dose formulations. The API solubility affected the mixer torque rheometer (MTR) curves and the optimum L/S ratio for TSWG. The highly soluble metformin needed a much lower L/S ratio compared with allopurinol and paracetamol. A design space was determined for each API based on granule flowability and tablet tensile strength. The flowability of the granules and tensile strength of the tablets improved with an increasing L/S ratio. The MCC-mannitol filler ratio had a significant effect on tabletability for paracetamol and metformin, and these APIs having poor compaction properties needed higher MCC ratios to achieve the 2 MPa limit. The MCC-mannitol ratio had no effect on the granule flow properties. Instead, API properties had the largest influence on both granule flow properties and tensile strength. Based on this study, both the L/S ratio and MCC-mannitol ratio are crucial in controlling the critical quality attributes in high drug load formulations processed by TSWG. The optimum flow and tablet mechanical properties were achieved when using 75:25 MCC-mannitol ratio. Both start of the slope and 2/3 of the L/S ratio at the maximum torque in MTR provided a solid guideline to aim for in a TSWG experiment.


Asunto(s)
Excipientes , Tecnología Farmacéutica , Composición de Medicamentos , Humanos , Tamaño de la Partícula , Solubilidad , Comprimidos , Resistencia a la Tracción
2.
Int J Pharm ; 592: 120055, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33176199

RESUMEN

A concept of mixing energy, ME, has been developed and applied to blending of adhesive mixtures for inhalation in a high shear blender. Six different systems were investigated, four of which included a coating agent. For blends containing a coating agent, it is shown that the applied ME is key to the control of two important functional mechanisms: i) coating of the carrier by the coating agent, and ii) the dispersibility of the active pharmaceutical ingredient (API). The mass of the carrier was identified to be the mass which is relevant to the forces acting during mixing. The dispersibility in terms of the fine particle fraction (FPF) can be expressed as the product of two exponentials which both are functions of ME. The first factor accounts for the initial increase in FPF, while the second accounts for the decrease observed at extensive mixing. For adhesive mixtures without a coating agent, a similar decrease in FPF is observed when high forces are applied during mixing. Mechanistic interpretation of the behavior is provided.


Asunto(s)
Adhesivos , Inhaladores de Polvo Seco , Administración por Inhalación , Química Farmacéutica , Portadores de Fármacos , Lactosa , Tamaño de la Partícula , Polvos
3.
Int J Pharm ; 524(1-2): 65-76, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28359820

RESUMEN

The focus was on the development of medicated foam for incorporation of two incompatible active agents for psoriasis treatment; i.e., lipophilic cholecalciferol, and hydrophilic salicylic acid. Emphasis was given to formulation of a propellant-free foam, with sufficient foaming properties, physical and chemical stability, and low irritancy potential to maintain relevance for later translation into clinical practice. Various excipients and concentrations were examined to achieve suitable foam stability parameters, viscoelasticity, and bubble-size, which relate to foamability and spreadability. The major positive impact on these properties was through a combination of surfactants, and by inclusion of a viscosity-modifying polymer. Incorporation of the incompatible drugs was then examined, noting the instability of cholecalciferol in an acidic environment, with the design aim to separate the drug distributions among the different foam phases. Cholecalciferol was stabilized in the emulsion-based foam, with at least a 30-fold lower degradation rate constant compared to its aqueous solution. The composition of the emulsion-based foam itself protected cholecalciferol from degradation, as well as the addition of the radical-scavenging antioxidant tocopheryl acetate to the oil phase. With the patient in mind, the irritancy potential was also examined, which was below the set limit that defines a non-irritant dermal product.


Asunto(s)
Emulsiones/química , Excipientes/química , Psoriasis/tratamiento farmacológico , Tensoactivos/química , Sustancias Viscoelásticas , Colecalciferol/administración & dosificación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA