Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 10(10): 4380-4388, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37465878

RESUMEN

Nanostructuration is a promising tool for enhancing the performance of sensors based on electrochemical transduction. Nanostructured materials allow for increasing the surface area of the electrode and improving the limit of detection (LOD). In this regard, inverse opals possess ideal features to be used as substrates for developing sensors, thanks to their homogeneous, interconnected pore structure and the possibility to functionalize their surface. However, overcoming the insulating nature of conventional silica inverse opals fabricated via sol-gel processes is a key challenge for their application as electrode materials. In this work, colloidal assembly, atomic layer deposition and selective surface functionalization are combined to design conductive inverse opals as an electrode material for novel glucose sensing platforms. An insulating inverse opal scaffold is coated with uniform layers of conducting aluminum zinc oxide and platinum, and subsequently functionalized with glucose oxidase embedded in a polypyrrole layer. The final device can sense glucose at concentrations in the nanomolar range and is not affected by the presence of common interferents gluconolactone and pyruvate. This method may also be applied to different conductive materials and enzymes to generate a new class of highly efficient biosensors.


Asunto(s)
Nanoestructuras , Polímeros , Polímeros/química , Porosidad , Pirroles , Nanoestructuras/química , Glucosa/química
2.
Chem Commun (Camb) ; 56(23): 3389-3392, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32091527

RESUMEN

Biotemplating makes it possible to prepare materials with complex structures by taking advantage of nature's ability to generate unique morphologies. In this work, we designed and produced a multi-scale porosity (MSP) scaffold starting from sea urchin spines by adding an additional nano-porosity to its native micro-porosity. The final replica shows porosity in both length scales and is an effective high-performing photocatalytic material.


Asunto(s)
Dióxido de Silicio/química , Titanio/química , Animales , Catálisis/efectos de la radiación , Luz , Porosidad , Prueba de Estudio Conceptual , Rodaminas/química , Erizos de Mar/química , Dióxido de Silicio/efectos de la radiación , Titanio/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...