Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 63
1.
J Integr Neurosci ; 23(3): 64, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38538230

BACKGROUND: Pannexin1 (Panx1) is a membrane channel expressed in different cells of the nervous system and is involved in several pathological conditions, including pain and inflammation. At the central nervous system, the role of Panx1 is already well-established. However, in the periphery, there is a lack of information regarding the participation of Panx1 in neuronal sensitization. The dorsal root ganglion (DRG) is a critical structure for pain processing and modulation. For this reason, understanding the molecular mechanism in the DRG associated with neuronal hypersensitivity has become highly relevant to discovering new possibilities for pain treatment. Here, we aimed to investigate the role of Panx1 in acute nociception and peripheral inflammatory and neuropathic pain by using two different approaches. METHODS: Rats were treated with a selective Panx1 blocker peptide (10Panx) into L5-DRG, followed by ipsilateral intraplantar injection of carrageenan, formalin, or capsaicin. DRG neuronal cells were pre-treated with 10Panx and stimulated by capsaicin to evaluate calcium influx. Panx1 knockout mice (Panx1-KO) received carrageenan or capsaicin into the paw and paclitaxel intraperitoneally. The von Frey test was performed to measure the mechanical threshold of rats' and mice's paws before and after each treatment. RESULTS: Pharmacological blockade of Panx1 in the DRG of rats resulted in a dose-dependent decrease of mechanical allodynia triggered by carrageenan, and nociception decreased in the second phase of formalin. Nociceptive behavior response induced by capsaicin was significantly lower in rats treated with Panx1 blockade into DRG. Neuronal cells with Panx1 blockage showed lower intracellular calcium response than untreated cells after capsaicin administration. Accordingly, Panx1-KO mice showed a robust reduction in mechanical allodynia after carrageenan and a lower nociceptive response to capsaicin. A single dose of paclitaxel promoted acute mechanical pain in wildtype (WT) but not in Panx1-KO mice. Four doses of chemotherapy promoted chronic mechanical allodynia in both genotypes, although Panx1-KO mice had significant ablation in the first eight days. CONCLUSION: Our findings suggest that Panx1 is critical for developing peripheral inflammatory pain and acute nociception involving transient receptor potential vanilloid subtype 1 (TRPV1) but is not essential for neuropathic pain chronicity.


Hyperalgesia , Neuralgia , Rats , Mice , Animals , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Capsaicin/pharmacology , Capsaicin/therapeutic use , Paclitaxel/adverse effects , Carrageenan/adverse effects , Calcium , Neuralgia/chemically induced , Neuralgia/drug therapy , Formaldehyde/adverse effects , Ganglia, Spinal , Nerve Tissue Proteins , Connexins/genetics , Connexins/therapeutic use
2.
Inflammopharmacology ; 32(2): 1239-1252, 2024 Apr.
Article En | MEDLINE | ID: mdl-38472616

BACKGROUND: Osteoarthritis (OA) is a chronic disease that may lead to joint structure degeneration, cartilage destruction, osteophyte formation, subchondral bone disruption, and pain. In this scenario, a higher proportion of the proinflammatory macrophage type 1 (M1) than the anti-inflammatory macrophage type 2 (M2) could be highlighted as a hallmark of OA progression. The balance between these two macrophage types emerges as a new therapeutic target in OA. This study aimed to evaluate the analgesia and macrophage profile in the treatment of experimental osteoarthritis (EOA) with systemic dimethyl fumarate (DMF) or local intra-articular monomethyl fumarate (MMF). RESULTS: DMF via gavage or MMF via intra-articular in the right knee of EOA rats showed improvements in gait parameters and the nociceptive recovery of the mechanical threshold assessment by adapted electronic von Frey treatment on the twenty-first day (long-lasting phase). DMF treatment decreased proinflammatory TNF-α while increasing anti-inflammatory IL-10 cytokines from the macerated capsule on the fifth day (inflammatory phase). MMF treatment showed joint capsule mRNA extraction downregulating iNOS and TNF-α gene expression while upregulating IL-10 and MCP-1. However, CD206 was not significant but higher than untreated EOA rats' joints on the seventh day (inflammatory phase). CONCLUSIONS: Our studies with EOA model induced by MIA suggest a new perspective for human treatment committed with OA based on macrophage polarization as a therapeutic target, switching the proinflammatory profile M1 to the anti-inflammatory profile M2 with DMF systematic or by MMF locally treatment according to the OA severity.


Fumarates , Interleukin-10 , Osteoarthritis , Humans , Rats , Animals , Tumor Necrosis Factor-alpha , Osteoarthritis/metabolism , Pain/drug therapy , Dimethyl Fumarate , Macrophages/metabolism , Anti-Inflammatory Agents/therapeutic use
3.
Eur J Oral Sci ; 132(1): e12957, 2024 Feb.
Article En | MEDLINE | ID: mdl-37908149

Stress substantially increases the risk of developing painful temporomandibular disorders (TMDs) by influencing the release of endogenous catecholamines. Propranolol, an antagonist of ß-adrenergic receptors, has shown potential in alleviating TMD-associated pain, particularly when the level of catecholamines is elevated. The aim of this study was to explore whether intra-articular propranolol administration is effective in diminishing temporomandibular joint (TMJ) pain during repeated stress situations. Additionally, we investigated the effect of repeated stress on the expression of genes encoding ß-adrenoceptors in the trigeminal ganglion. In the present study, rats were exposed to a stress protocol induced by sound, then to the administration of formalin in the TMJ (to elicit a nociceptive response), followed immediately afterward by different doses of propranolol, after which the analgesic response to propranolol was evaluated. We also assessed the levels of beta-1 and beta-2 adrenergic receptor mRNAs (Adrb1 and Adrb2, respectively) using reverse transcription-quantitative PCR (RT-qPCR). Our findings revealed that propranolol administration reduces formalin-induced TMJ nociception more effectively in stressed rats than in non-stressed rats. Furthermore, repeated stress decreases the expression of the Adrb2 gene within the trigeminal ganglion. The findings of this study are noteworthy as they suggest that individuals with a chronic stress history might find potential benefits from ß-blockers in TMD treatment.


Propranolol , Temporomandibular Joint , Rats , Animals , Propranolol/adverse effects , Temporomandibular Joint/metabolism , Rats, Wistar , Pain , Catecholamines/metabolism , Catecholamines/pharmacology , Catecholamines/therapeutic use , Formaldehyde/adverse effects , Formaldehyde/metabolism
4.
Eur J Oral Sci ; 131(4): e12936, 2023 08.
Article En | MEDLINE | ID: mdl-37243959

Temporomandibular disorder (TMD) is a common painful condition of the temporomandibular joint (TMJ) and associated structures. Stress is a significant risk factor for developing this painful condition that predominantly affects women. This study aimed to test the hypothesis that stress increases the risk of developing TMJ pain by facilitating inflammatory mechanisms in female and male rats. To test this hypothesis, we evaluated TMJ carrageenan-induced expression of pro-inflammatory cytokines and migration of inflammatory cells and TMJ formalin-induced nociception in female and male rats submitted to a repeated stress protocol induced by sound. We found that sound-induced repeated stress facilitates TMJ inflammation and contributes to TMJ nociception development equally in females and males. We conclude that stress is a risk factor for developing painful TMJ conditions in males and females, at least in part, by favoring the inflammatory process similarly in both sexes.


Pain , Temporomandibular Joint , Rats , Female , Male , Animals , Rats, Wistar , Pain Measurement , Pain/etiology , Inflammation
5.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 05.
Article En | MEDLINE | ID: mdl-37111303

Unsuccessful anesthesia often occurs under an inflammatory tissue environment, making dentistry treatment extremely painful and challenging. Articaine (ATC) is a local anesthetic used at high (4%) concentrations. Since nanopharmaceutical formulations may improve the pharmacokinetics and pharmacodynamics of drugs, we encapsulated ATC in nanostructured lipid carriers (NLCs) aiming to increase the anesthetic effect on the inflamed tissue. Moreover, the lipid nanoparticles were prepared with natural lipids (copaiba (Copaifera langsdorffii) oil and avocado (Persia gratissima) butter) that added functional activity to the nanosystem. NLC-CO-A particles (~217 nm) showed an amorphous lipid core structure according to DSC and XDR. In an inflammatory pain model induced by λ-carrageenan in rats, NLC-CO-A improved (30%) the anesthetic efficacy and prolonged anesthesia (3 h) in relation to free ATC. In a PGE2-induced pain model, the natural lipid formulation significantly reduced (~20%) the mechanical pain when compared to synthetic lipid NLC. Opioid receptors were involved in the detected analgesia effect since their blockage resulted in pain restoration. The pharmacokinetic evaluation of the inflamed tissue showed that NLC-CO-A decreased tissue ATC elimination rate (ke) by half and doubled ATC's half-life. These results present NLC-CO-A as an innovative system to break the impasse of anesthesia failure in inflamed tissue by preventing ATC accelerated systemic removal by the inflammatory process and improving anesthesia by its association with copaiba oil.

6.
Int J Mol Sci ; 23(19)2022 Oct 03.
Article En | MEDLINE | ID: mdl-36233026

Radiofrequency energy is a common treatment modality for chronic pain. While there are different forms of radiofrequency-based therapeutics, the common concept is the generation of an electromagnetic field in the applied area, that can result in neuromodulation (pulsed radiofrequency-PRF) or ablation. Our specific focus relates to PRF due to the possibility of modulation that is in accordance with the mechanisms of action of orthobiologics. The proposed mechanism of action of PRF pertaining to pain relief relies on a decrease in pro-inflammatory cytokines, an increase in cytosolic calcium concentration, a general effect on the immune system, and a reduction in the formation of free radical molecules. The primary known properties of orthobiologics constitute the release of growth factors, a stimulus for endogenous repair, analgesia, and improvement of the function of the injured area. In this review, we described the mechanism of action of both treatments and pertinent scientific references to the use of the combination of PRF and orthobiologics. Our hypothesis is a synergic effect with the combination of both techniques which could benefit patients and improve the life quality.


Chronic Pain , Pulsed Radiofrequency Treatment , Calcium , Chronic Pain/therapy , Cytokines , Humans , Pain Management/methods , Pulsed Radiofrequency Treatment/methods , Treatment Outcome
7.
Sci Rep ; 12(1): 16730, 2022 10 06.
Article En | MEDLINE | ID: mdl-36202956

Several recent studies have established the efficacy of photobiomodulation therapy (PBMT) in painful clinical conditions. Diabetic neuropathy (DN) can be related to activating mitogen-activated protein kinases (MAPK), such as p38, in the peripheral nerve. MAPK pathway is activated in response to extracellular stimuli, including interleukins TNF-α and IL-1ß. We verified the pain relief potential of PBMT in streptozotocin (STZ)-induced diabetic neuropathic rats and its influence on the MAPK pathway regulation and calcium (Ca2+) dynamics. We then observed that PBMT applied to the L4-L5 dorsal root ganglion (DRG) region reduced the intensity of hyperalgesia, decreased TNF-α and IL-1ß levels, and p38-MAPK mRNA expression in DRG of diabetic neuropathic rats. DN induced the activation of phosphorylated p38 (p-38) MAPK co-localized with TRPV1+ neurons; PBMT partially prevented p-38 activation. DN was related to an increase of p38-MAPK expression due to proinflammatory interleukins, and the PBMT (904 nm) treatment counteracted this condition. Also, the sensitization of DRG neurons by the hyperglycemic condition demonstrated during the Ca2+ dynamics was reduced by PBMT, contributing to its anti-hyperalgesic effects.


Diabetes Mellitus , Diabetic Neuropathies , Low-Level Light Therapy , Animals , Calcium/metabolism , Calcium, Dietary/metabolism , Diabetes Mellitus/metabolism , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/radiotherapy , Ganglia, Spinal/metabolism , Hyperalgesia , Mitogen-Activated Protein Kinases/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Streptozocin/pharmacology , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Inflammation ; 45(6): 2280-2293, 2022 Dec.
Article En | MEDLINE | ID: mdl-35840810

Inflammation is a vital process for the injured tissue restoration and one of its hallmarks is inflammatory hyperalgesia. The cyclooxygenase (COX) pathway is strongly related to the inflammatory and painful process. Usually, the COX-1 isoform is described as homeostatic, while COX-2 is characterized as inducible in inflammatory conditions. Although it is well known that neutrophil cells are the first to arrive at the inflamed site and the major source of COX-2 is still unknown, the specific role of neutrophil-derived COX-2 in the pain process is. Thus, in the present study, we demonstrate for the first time that neutrophil-derived COX-2 plays a key role in peripheral inflammatory hyperalgesia. Conditional knockout mice for COX-2 in neutrophils (COX-2 fl/fl: Mrp8cre±) exhibited higher pain sensitivity after carrageenan (CG) injection and long-lasting IL-1ß-induced hyperalgesia compared with the control group (COX-2 fl/fl). Also, CG-induced inflammation in COX-2 fl/fl: Mrp8cre± mice showed COX-1 overexpression, and increased neutrophil migration and pro-inflammatory cytokines (e.g., IL-1ß and CXCL1). These findings revealed that neutrophil COX-2 has an important role in the regulation of inflammatory hyperalgesia.


Hyperalgesia , Neutrophils , Animals , Mice , Carrageenan/pharmacology , Cyclooxygenase 2/metabolism , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Inflammation/chemically induced , Neutrophils/metabolism , Pain
9.
PLoS One ; 15(10): e0240115, 2020.
Article En | MEDLINE | ID: mdl-33048957

Chronic pain affects significant portion of the world's population and physical exercise has been extensively indicated as non-pharmacological clinical intervention to relieve symptoms in chronic pain conditions. In general, studies on pain chronification and physical exercise intervention have focused on neuropathic pain, although chronic pain commonly results from an original inflammatory episode. Based on this, the objective of the present study was to investigate the therapeutic and preventive effect of the running wheel exercise on the persistent hyperalgesia induced by repetitive inflammatory stimulus, a rodent model that simulates clinical conditions of chronic pain that persist even with no more inflammatory stimulus present. To evaluate the therapeutic effect of physical exercise, we first induced persistent hyperalgesia through 14 days of PGE2 hind paw injections and, after that, mice have access to the regular voluntary running wheel. To evaluate the preventive effect of physical exercise, we first left the mice with access to the regular voluntary running wheel and, after that, we performed 14 days of PGE2 hind paw injection. Our results showed that voluntary running wheel exercise reduced persistent mechanical and chemical hyperalgesia intensity induced by repetitive inflammatory stimulus. In addition, we showed that this therapeutic effect is long-lasting and is observed even if started belatedly, i.e. two weeks after the development of hyperalgesia. Also, our results showed that voluntary running wheel exercise absolutely prevented persistent mechanical and chemical hyperalgesia induction. We can conclude that physical exercise has therapeutic and preventive effect on inflammatory stimulus-induced persistent hyperalgesia. Our data from animal experiments bypass placebo effects bias of the human studies and reinforce physical exercise clinical recommendations to treat and prevent chronic pain.


Exercise Therapy , Hyperalgesia/etiology , Hyperalgesia/therapy , Inflammation/complications , Animals , Chronic Pain/etiology , Chronic Pain/prevention & control , Chronic Pain/therapy , Disease Models, Animal , Hyperalgesia/prevention & control , Male , Mice , Mice, Inbred C57BL , Physical Conditioning, Animal , Running
10.
Toxins (Basel) ; 12(9)2020 09 11.
Article En | MEDLINE | ID: mdl-32933013

Pain is a distressful experience that can have a major impact on an individual's quality of life. The need for new and better analgesics has been further intensified in light of the current opioid epidemic. Substances obtained from amphibians have been shown to contain bioactive peptides that exert analgesic effects. The genus Phyllomedusa represents an important source of peptides and bioactive components. The aim of this study was to investigate the antinociceptive effects of the skin secretion of Phyllomedusa rohdei in rodent models of pain. The crude skin extract of P. rohdei was tested in different pain models: acetic acid-induced writhing test (mice), formalin test (rats), Von Frey electronic test for hypernociception induced by PGE2 (rats), and hot plate test (mice). Motor-impairing effects were tested using the rota-rod test. The results showed that the skin extract of P. rohdei exerted antinociceptive effects in all pain models tested. Particularly, the highest dose tested of the skin extract decreased acetic acid-induced writhing by 93%, completely blocked formalin-induced nociception both during the acute and inflammatory phases of the test, PGE2-induced hypernociception by 73% and increased latency to paw withdrawal in the hot plate test by 300%. The effects observed in the hot plate test were reversed by pretreatment with selective µ and κ, but not δ, opioid receptor antagonists, indicating a mechanism of action dependent on µ and κ opioid receptors. The results were not influenced by sedative effects. Further studies remain necessary to reveal the specific compounds involved in the antinociceptive effects of P. rohdei skin extract as a new therapeutic tool in pain management.


Analgesics/pharmacology , Anura/metabolism , Nociceptive Pain/prevention & control , Skin/metabolism , Analgesics/metabolism , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Male , Mice , Nociceptive Pain/etiology , Nociceptive Pain/metabolism , Nociceptive Pain/physiopathology , Pain Threshold/drug effects , Rats, Wistar , Receptors, Opioid, delta/metabolism , Receptors, Opioid, mu/metabolism , Secretory Pathway
11.
Neurosci Lett ; 736: 135253, 2020 09 25.
Article En | MEDLINE | ID: mdl-32710918

Peripheral neuropathy is a complication of diabetes commonly associated with pain and decline in motor compound action potential, leading to alterations in plantar pressure during gait. We identified motor impairments in streptozotocin (STZ)-induced diabetic neuropathic rats and correlated with mechanical withdrawal thresholds, establishing this correlation as a complementary method to investigate the development of chronic hyperalgesia in diabetic neuropathy. METHODS: UNICAMP's Ethics Committee (protocol number 3902-1) approved all experiments. Male Lewis rats (200-250 g) received a STZ-low-dose (25 mg/kg/day) (STZ group) or 0.1 M sodium citrate buffer (SCB, control group) once a day, during five consecutive days. Diabetic rats (250 mg/dL blood glucose) were submitted to electronic von Frey and CatWalk tests at 0, 7, 14, 21, and 28 days after treatment. RESULTS: STZ, but not SCB, induced diabetes. After the 14th day (STZ)-induced diabetic rats showed mechanical hyperalgesia and a reduction in the hind limbs footprint intensities. At the 28th day, rats presented alterations in spatial parameters (Maximum Contact Area; Stride Length; Print Area), which showed a strong correlation with mechanical withdrawal thresholds (r2 = 0.97; 0.99, and 0.93, respectively). CONCLUSIONS: Correlation between gait parameters and mechanical withdrawal thresholds enables a better experimental approach to evaluate the development of chronic hyperalgesia in the STZ-induced diabetes model. It allows a concise crosstalk of motor and sensorial functions, which are usually analyzed individually. CatWalk gait parameters can be used as a complementary tool to investigate the development of hyperalgesia in STZ-induced diabetic neuropathic rats.


Diabetes Mellitus, Experimental , Diabetic Neuropathies , Gait Analysis/methods , Gait Disorders, Neurologic , Hyperalgesia , Animals , Diabetes Mellitus, Experimental/complications , Diabetic Neuropathies/complications , Gait Disorders, Neurologic/etiology , Hyperalgesia/etiology , Male , Rats , Rats, Inbred Lew
12.
Br J Pharmacol ; 177(20): 4615-4626, 2020 10.
Article En | MEDLINE | ID: mdl-32562269

BACKGROUND AND PURPOSE: While dipyrone is a widely used analgesic, its mechanism of action is not completely understood. Recently, we have reported that the dipyrone metabolite 4-aminoantipyrine (4-AA) reduces PGE2 -induced pain-related behaviour through cannabinoid CB1 receptors. Here, we ascertained, in naive and PGE2 -induced "inflamed" conditions, both in vivo and in vitro, the molecular mechanisms involved in the 4-AA-induced analgesic effects. EXPERIMENTAL APPROACH: The effect of local administration of 4-AA (160 µg per paw) on capsaicin (0.12 µg per paw) injection-induced pain-related behaviour and 4-AA's effect on 500-nM capsaicin-induced changes in intracellular calcium concentration ([Ca2+ ]i ) in cultured primary sensory neurons were assessed in vivo and in vitro, respectively. KEY RESULTS: 4-AA reduced capsaicin-induced nociceptive behaviour in naive and inflamed conditions through CB1 receptors. 4-AA (100 µM) reduced capsaicin-induced increase in [Ca2+ ]i in a CB1 receptor-dependent manner, when PGE2 was not present. Following PGE2 application, 4-AA (1-50 µM) increased the [Ca2+ ]i . Although 4-AA activated both TRPV1 and TRPA1 channels, increased [Ca2+ ]i was mediated through TRPV1 channels. Activation of TRPV1 channels resulted in their desensitisation. Blocking CB1 receptors reduced both the excitatory and desensitising effects of 4-AA. CONCLUSION AND IMPLICATIONS: CB1 receptor-mediated inhibition of TRPV1 channels and TRPV1-mediated Ca2+ -influx- and CB1 receptor-dependent desensitisation of TRPV1 channels contribute to the anti-nociceptive effect of 4-AA in naive and inflamed conditions respectively. Agonists active at both CB1 receptors and TRPV1 channels might be useful as analgesics, particularly in inflammatory conditions.


Dipyrone , TRPV Cation Channels , Analgesics/pharmacology , Capsaicin/pharmacology , Dipyrone/pharmacology , Ganglia, Spinal , Sensory Receptor Cells
13.
Front Physiol ; 11: 473, 2020.
Article En | MEDLINE | ID: mdl-32523543

Peripheral inflammatory hyperalgesia depends on the sensitization of primary nociceptive neurons. Inflammation drives molecular alterations not only locally but also in the dorsal root ganglion (DRG) where interleukin-1 beta (IL-1ß) and purinoceptors are upregulated. Activation of the P2X7 purinoceptors by ATP is essential for IL-1ß maturation and release. At the DRG, P2X7R are expressed by satellite glial cells (SGCs) surrounding sensory neurons soma. Although SGCs have no projections outside the sensory ganglia these cells affect pain signaling through intercellular communication. Therefore, here we investigated whether activation of P2X7R by ATP and the subsequent release of IL-1ß in DRG participate in peripheral inflammatory hyperalgesia. Immunofluorescent images confirmed the expression of P2X7R and IL-1ß in SGCs of the DRG. The function of P2X7R was then verified using a selective antagonist, A-740003, or antisense for P2X7R administered in the L5-DRG. Inflammation was induced by CFA, carrageenan, IL-1ß, or PGE2 administered in rat's hind paw. Blockage of P2X7R at the DRG reduced the mechanical hyperalgesia induced by CFA, and prevented the mechanical hyperalgesia induced by carrageenan or IL-1ß, but not PGE2. It was also found an increase in P2X7 mRNA expression at the DRG after peripheral inflammation. IL-1ß production was also increased by inflammatory stimuli in vivo and in vitro, using SGC-enriched cultures stimulated with LPS. In LPS-stimulated cultures, activation of P2X7R by BzATP induced the release of IL-1ß, which was blocked by A-740003. In summary, our data suggest that peripheral inflammation leads to the activation of P2X7R expressed by SGCs at the DRG. Then, ATP-induced activation of P2X7R mediates the release of IL-1ß from SGC. This evidence places the SGC as an active player in the establishment of peripheral inflammatory hyperalgesia and highlights the importance of the events in DRG for the treatment of inflammatory diseases.

14.
Neurosci Lett ; 729: 135006, 2020 06 11.
Article En | MEDLINE | ID: mdl-32387758

Recently the voltage-gated sodium (Nav) channels began to be studied as possible targets for analgesic drugs. In addition, specific Nav 1.8 blockers are currently being used to treat some types of chronic pain pathologies such as neuropathies and fibromyalgia. Nav 1.8+ fibers convey nociceptive information to brain structures belonging to the limbic system, which is involved in the pathophysiology of major depressive disorders. From this, using a model of chronic social defeat stress (SDS) and intrathecal injections of Nav 1.8 antisense, this study investigated the possible involvement of Nav 1.8+ nociceptive fibers in SDS- induced hyperalgesia in C57/BL mice. Our results showed that SDS induced a depressive-like behavior of social avoidance and increased the sensitivity to mechanical (electronic von Frey test) and chemical (capsaicin test) nociceptive stimuli. We also showed that intrathecal injection of Nav 1.8 antisense reversed the SDS-induced hyperalgesia as demonstrated by both, mechanical and chemical nociceptive tests. We confirmed the antisense efficacy and specificity in a separate no-defeated cohort through real-time PCR, which showed a significant reduction of Nav 1.8 mRNA and no reduction of Nav 1.7 and Nav 1.9 in the L4, L5 and L6 dorsal root ganglia (DRG). The present study advances the understanding of SDS-induced hyperalgesia, which seems to be dependent on Nav 1.8+ nociceptive fibers.


Depressive Disorder, Major/physiopathology , Hyperalgesia/drug therapy , Social Defeat , Sodium Channel Blockers/pharmacology , Animals , Depressive Disorder, Major/drug therapy , Ganglia, Spinal/drug effects , Ganglia, Spinal/physiopathology , Hyperalgesia/physiopathology , Male , Mice, Inbred C57BL , Tetrodotoxin/pharmacology
15.
Eur J Pharmacol ; 879: 173054, 2020 Jul 15.
Article En | MEDLINE | ID: mdl-32145326

We have previously shown that endogenous adenosine 5'-triphosphate (ATP), via P2X3 and P2X2/3 receptors, plays an essential role in carrageenan-induced articular hyperalgesia model in rats' knee joint. In the present study, we used the rat knee joint incapacitation test, Enzyme-Linked Immunosorbent Assay (ELISA), and myeloperoxidase enzyme activity assay, to test the hypothesis that the activation of P2X3 and P2X2/3 receptors by their agonist induces articular hyperalgesia mediated by the inflammatory mediators bradykinin, prostaglandin, sympathomimetic amines, pro-inflammatory cytokines and by neutrophil migration. We also tested the hypothesis that the activation of P2X3 and P2X2/3 receptors contributes to the articular hyperalgesia induced by the inflammatory mediators belonging to carrageenan inflammatory cascade. The non-selective P2X3 and P2X2/3 receptors agonist αß-meATP induced a dose-dependent articular hyperalgesia, which was significantly reduced by the selective antagonists for P2X3 and P2X2/3 receptors (A-317491), bradykinin B1- (DALBK) or B2-receptors (bradyzide), ß1-(atenolol) or ß2-adrenoceptors (ICI-118,551), by the pre-treatment with cyclooxygenase inhibitor (indomethacin) or with the nonspecific selectin inhibitor (Fucoidan). αß-meATP induced the release of pro-inflammatory cytokines TNFα, IL-1ß, IL-6, and CINC-1, as well as the neutrophil migration. Moreover, the co-administration of A-317491 significantly reduced the articular hyperalgesia induced by bradykinin, prostaglandin E2 (PGE2), and dopamine. These findings suggest that peripheral P2X3 and P2X2/3 receptors activation induces articular hyperalgesia by an indirect sensitization of the primary afferent nociceptor of rats' knee joint through the release of inflammatory mediators. Further, they also indicate that the activation of these purinergic receptors by endogenous ATP mediates the bradykinin-, PGE2-, and dopamine-induced articular hyperalgesia.


Hyperalgesia/metabolism , Receptors, Purinergic P2X2/metabolism , Receptors, Purinergic P2X3/metabolism , Adenosine Triphosphate/analogs & derivatives , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Bradykinin , Cytokines/immunology , Dinoprostone , Dopamine , Hyperalgesia/chemically induced , Hyperalgesia/immunology , Knee Joint/immunology , Knee Joint/metabolism , Male , Neutrophils/drug effects , Phenols/pharmacology , Phenols/therapeutic use , Polycyclic Compounds/pharmacology , Polycyclic Compounds/therapeutic use , Purinergic P2X Receptor Agonists , Purinergic P2X Receptor Antagonists/pharmacology , Purinergic P2X Receptor Antagonists/therapeutic use , Rats, Wistar
16.
Eur J Pharmacol ; 874: 173005, 2020 May 05.
Article En | MEDLINE | ID: mdl-32057719

Dipyrone is an analgesic pro-drug used clinically to control moderate pain with a high analgesic efficacy and low toxicity. Dipyrone is hydrolyzed to 4-methylaminoantipyrine (4-MAA), which is metabolized to 4-aminoantipyrine (4-AA). Here, were investigate the involvement of peripheral cannabinoid CB2 and opioid receptor activation in the local antihyperalgesic effect of dipyrone and 4-MAA. The inflammatory agent, carrageenan was administered to the hindpaw of male Wistar rats, and the mechanical nociceptive threshold was quantified by electronic von Frey test. Dipyrone or 4-MAA were locally administered 2.5 h after carrageenan. Following dipyrone injection, hindpaw tissue was harvested and its hydrolysis to 4-MAA was analyzed by mass spectrometry (MS). The selective CB2 receptor antagonist (AM630), naloxone (a non-selective opioid receptor antagonist), nor-BNI (a selective kappa-opioid receptor), CTOP (a selective mu-opioid receptor), or naltrindole (a selective delta-opioid receptor) was administered 30 min prior to 4-MAA. The results demonstrate that carrageenan-induced mechanical hyperalgesia was inhibited by dipyrone or 4-MAA in a dose-dependent manner. Dipyrone administered to the hindpaw was completely hydrolyzed to 4-MAA. The antihyperalgesic effect of 4-MAA was completely reversed by AM630, naloxone and nor-BNI, but not by CTOP or naltrindole. These data suggest that the local analgesic effect of dipyrone is mediated by its hydrolyzed bioactive form, 4-MAA and, at least in part, depends on CB2 receptor and kappa-opioid receptor activation. In conclusion, the analgesic effect of dipyrone may involve a possible interaction between the cannabinoid and opioid system in peripheral tissue.


Analgesics/pharmacology , Analgesics/therapeutic use , Dipyrone/pharmacology , Dipyrone/therapeutic use , Hyperalgesia/drug therapy , Receptor, Cannabinoid, CB2 , Receptors, Opioid, kappa , Animals , Cannabinoid Receptor Antagonists/pharmacology , Carrageenan , Dipyrone/analogs & derivatives , Hydrolysis , Hyperalgesia/metabolism , Indoles/pharmacology , Male , Naloxone/pharmacology , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Rats, Wistar , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptors, Opioid, kappa/antagonists & inhibitors , Somatostatin/analogs & derivatives , Somatostatin/pharmacology
17.
Purinergic Signal ; 15(2): 167-175, 2019 06.
Article En | MEDLINE | ID: mdl-31115830

P2X3 receptors are involved with several pain conditions. Muscle pain induced by static contraction has an important socioeconomic impact. Here, we evaluated the involvement of P2X3 receptors on mechanical muscle hyperalgesia and neutrophil migration induced by static contraction in rats. Also, we evaluated whether static contraction would be able to increase muscle levels of TNF-α and IL-1ß. Male Wistar rats were pretreated with the selective P2X3 receptor antagonist, A-317491, by intramuscular or intrathecal injection and the static contraction-induced mechanical muscle hyperalgesia was evaluated using the Randall-Selitto test. Neutrophil migration was evaluated by measurement of myeloperoxidase (MPO) kinetic-colorimetric assay and the cytokines TNF-α and IL-1ß by enzyme-linked immunosorbent assay. Intramuscular or intrathecal pretreatment with A-317491 prevented static contraction-induced mechanical muscle hyperalgesia. In addition, A-317491 reduced static contraction-induced mechanical muscle hyperalgesia when administered 30 and 60 min of the beginning of static contraction, but not after 30 and 60 min of the end of static contraction. Intramuscular A-317491 also prevented static contraction-induced neutrophil migration. In a period of 24 h, static contraction did not increase muscle levels of TNF-α and IL-1ß. These findings demonstrated that mechanical muscle hyperalgesia and neutrophil migration induced by static contraction are modulated by P2X3 receptors expressed on the gastrocnemius muscle and spinal cord dorsal horn. Also, we suggest that P2X3 receptors are important to the development but not to maintenance of muscle hyperalgesia. Therefore, P2X3 receptors can be pointed out as a target to musculoskeletal pain conditions induced by daily or work-related activities.


Myalgia/metabolism , Neutrophils , Receptors, Purinergic P2X3/metabolism , Animals , Cell Movement , Hyperalgesia/etiology , Hyperalgesia/metabolism , Male , Muscle Contraction/drug effects , Muscle Contraction/physiology , Myalgia/etiology , Neutrophils/drug effects , Phenols/pharmacology , Polycyclic Compounds/pharmacology , Purinergic P2X Receptor Antagonists/pharmacology , Rats , Rats, Wistar
18.
Neuroscience ; 398: 158-170, 2019 02 01.
Article En | MEDLINE | ID: mdl-30537520

Peripheral diabetic neuropathy (PDN) manifests in 50-60% of type I and II diabetic patients and is the major cause of limb amputation. Adequate therapy for PDN is a current challenge. There are evidences that the activation of the P2X4 receptor (P2X4R) expressed on microglial cells of the central nervous system takes part in the development of neuropathic pain. However, there is an open question: Is P2X4R activation on dorsal root ganglia (DRG) involved in the development of neuropathic pain? To answer this question, this study verified the involvement of P2X4R expressed in DRG cells on diabetes-induced neuropathic mechanical hyperalgesia in rats. We found that intrathecal or ganglionar (L5-DRG) administration of a novel P2X4R antagonist (PSB-15417) or intrathecal administration of oligodeoxynucleotides (ODN)-antisense against the P2X4R reversed diabetes-induced neuropathic mechanical hyperalgesia. The DRG of the diabetic neuropathic rats showed an increase in P2X4R expression, and the DRG immunofluorescence suggested that P2X4R is expressed mainly in satellite glial cells (SGC). Finally, our study showed a functional expression of P2X4R in SGCs of the rat's DRG, because the P2X4R agonist BzATP elicits an increase in intracellular calcium concentration in SGCs, which was reduced by PSB-15417. These findings indicate that P2X4R activation in DRG is essential to diabetes-induced neuropathic mechanical hyperalgesia. Therefore, this purinergic receptor in DRG could be an interesting therapeutic target for quaternary P2X4R antagonists that do not cross the hematoencephalic barrier, for the control of neuropathic pain, preserving central nervous system functions.


Diabetes Mellitus, Experimental/metabolism , Diabetic Neuropathies/metabolism , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Neuralgia/metabolism , Receptors, Purinergic P2X4/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/pathology , Ganglia, Spinal/drug effects , Ganglia, Spinal/pathology , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Male , Neuralgia/drug therapy , Neuralgia/pathology , Neuroglia/drug effects , Neuroglia/metabolism , Neuroglia/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Purinergic P2X Receptor Antagonists , Random Allocation , Rats, Wistar , Touch
19.
J Ethnopharmacol ; 233: 131-140, 2019 Apr 06.
Article En | MEDLINE | ID: mdl-30590196

ETHNOPHARMACOLOGICAL RELEVANCE: Tabebuia aurea (Silva Manso) Benth. & Hook. f. ex S. Moore is used as anti-inflammatory, analgesic and antiophidic in traditional medicine, though its pharmacological proprieties are still underexplored. In the bothropic envenoming, pain is a key symptom drove by an intense local inflammatory and neurotoxic event. The antivenom serum therapy is still the main treatment despite its poor local effects against pain and tissue injury. Furthermore, it is limited to ambulatorial niches, giving space for the search of new and more inclusive pharmacological approaches. AIM OF THE STUDY: evaluation of Tabebuia aurea hydroethanolic extract (HEETa) in hyperalgesia and neuronal injury induced by Bothrops mattogrossensis venom (VBm). MATERIALS AND METHODS: Stem barks from Tabebuia aurea were extracted with ethanol and water (7:3, v/v) to yield the extract HEETa. Then, HEETa was analyzed by LC-DAD-MS and its constituents were identified. Snake venoms were extracted from adult specimens of Bothrops mattogrossensis, lyophilized and kept at -20 °C until use. Male Swiss mice, weighting 20-25 g, were used to hyperalgesia (electronic von Frey), motor impairment (Rotarod test) and tissue injury evaluation (histopatology and ATF-3 immunohistochemistry). Therefore, three experimental groups were formed: VBm (1 pg, 1 ng, 0.3 µg, 1 µg, 3 and 6 µg/paw), HEETa orally (180, 540, 720, 810 or 1080 mg/kg; 10 mL/kg, 30 min prior VBm inoculation) and VBm neutralized (VBm: HEETa, 1:100 parts, respectively). In all set of experiments a control (saline group) was used. First, we made a dose-time-response course curve of VBm's induced hyperalgesia. Next, VBm maximum hyperalgesic dose was employed to perform HEETa orally dose-time-response course curve and analyses of VBm neutralized. Paw tissues for histopathology and DRGs were collected from animals inoculated with VBm maximum dose and treated with HEETa antihyperalgesic effective dose or neutralized VBm. Paws were extract two or 72 h after VBm inoculation and DRGs, in the maximum expected time expression of ATF-3 (72 h). RESULTS: From HEETa extract, glycosylated iridoids were identified, such as catalpol, minecoside, verminoside and specioside. VBm induced a time and dose dependent hyperalgesia with its highest effect seen with 3 µg/paw, 2 h after venom inoculation. HEETa effective dose (720 mg/kg) decreased significantly VBm induced hyperalgesia (3 µg/paw) with no motor impairment and signs of acute toxicity. HEETa antihyperalgesic action starts 1.5 h after VBm inoculation and lasted up until 2 h after VBm. Hyperalgesia wasn't reduced by VBm: HEETa neutralization. Histopathology revealed a large hemorragic field 2 h after VBm inoculation and an intense inflammatory infiltrate of polymorphonuclear cells at 72 h. Both HEETa orally and VBm: HEETa groups had a reduced inflammation at 72 h after VBm. Also, the venom significantly induced ATF-3 expression (35.37 ±â€¯3.25%) compared with saline group (4.18 ±â€¯0.68%) which was reduced in HEETa orally (25.87 ±â€¯2.57%) and VBm: HEETa (19.84 ±â€¯2.15%) groups. CONCLUSION: HEETa reduced the hyperalgesia and neuronal injury induced by VBm. These effects could be related to iridoid glycosides detected in HEETa and their intrinsic reported mechanism.


Analgesics/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Bothrops , Hyperalgesia/drug therapy , Plant Extracts/therapeutic use , Snake Venoms/toxicity , Tabebuia , Activating Transcription Factor 3/metabolism , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Ganglia, Spinal/injuries , Hyperalgesia/metabolism , Male , Mice , Neurons/drug effects , Neurons/metabolism , Phytotherapy , Plant Extracts/pharmacology , Plant Stems
20.
Front Neurosci ; 13: 1453, 2019.
Article En | MEDLINE | ID: mdl-32038148

Recent findings from rodent studies suggest that high-fat diet (HFD) increases hyperalgesia independent of obesity status. Furthermore, weight loss interventions such as voluntary physical activity (PA) for adults with obesity or overweight was reported to promote pain reduction in humans with chronic pain. However, regardless of obesity status, it is not known whether HFD intake and sedentary (SED) behavior is underlies chronic pain susceptibility. Moreover, differential gene expression in the nucleus accumbens (NAc) plays a crucial role in chronic pain susceptibility. Thus, the present study used an adapted model of the inflammatory prostaglandin E2 (PGE2)-induced persistent hyperalgesia short-term (PH-ST) protocol for mice, an HFD, and a voluntary PA paradigm to test these hypotheses. Therefore, we performed an analysis of differential gene expression using a transcriptome approach of the NAc. We also applied a gene ontology enrichment tools to identify biological processes associated with chronic pain susceptibility and to investigate the interaction between the factors studied: diet (standard diet vs. HFD), physical activity behavior (SED vs. PA) and PH-ST (PGE vs. saline). Our results demonstrated that HFD intake and sedentary behavior promoted chronic pain susceptibility, which in turn was prevented by voluntary physical activity, even when the animals were fed an HFD. The transcriptome of the NAc found 2,204 differential expression genes and gene ontology enrichment analysis revealed 41 biologic processes implicated in chronic pain susceptibility. Taking these biological processes together, our results suggest that genes related to metabolic and mitochondria stress were up-regulated in the chronic pain susceptibility group (SED-HFD-PGE), whereas genes related to neuroplasticity were up-regulated in the non-chronic pain susceptibility group (PA-HFD-PGE). These findings provide pieces of evidence that HFD intake and sedentary behavior provoked gene expression changes in the NAc related to promotion of chronic pain susceptibility, whereas voluntary physical activity provoked gene expression changes in the NAc related to prevention of chronic pain susceptibility. Finally, our findings confirmed previous literature supporting the crucial role of voluntary physical activity to prevent chronic pain and suggest that low levels of voluntary physical activity would be helpful and highly recommended as a complementary treatment for those with chronic pain.

...